Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/42/2/10.1118/1.4905050
1.
1.P. Castadot, J. A. Lee, X. Geets, and V. Grégoire, “Adaptive radiotherapy of head and neck cancer,” Semin. Radiat. Oncol. 20, 8493 (2010).
http://dx.doi.org/10.1016/j.semradonc.2009.11.002
2.
2.D. L. Schwartz and L. Dong, “Adaptive radiation therapy for head and neck cancer-can an old goal evolve into a new standard?,” J. Oncol. 2011, 113 (2011).
http://dx.doi.org/10.1155/2011/690595
3.
3.Y. Yang, E. Schreibmann, T. Li, C. Wang, and L. Xing, “Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation,” Phys. Med. Biol. 52, 685705 (2007).
http://dx.doi.org/10.1088/0031-9155/52/3/011
4.
4.C. Veiga, J. McClelland, S. Moinuddin, A. Lourenço, K. Ricketts, J. Annkah, M. Modat, S. Ourselin, D. D’Souza, and G. Royle, “Toward adaptive radiotherapy for head and neck patients: Feasibility study on using CT-to-CBCT deformable registration for ‘dose of the day’ calculations,” Med. Phys. 41, 031703 (12pp.) (2014).
http://dx.doi.org/10.1118/1.4864240
5.
5.T. Zhang, Y. Chi, E. Meldolesi, and D. Yan, “Automatic delineation of on-line head-and-neck computed tomography images: Toward on-line adaptive radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 68, 522530 (2007).
http://dx.doi.org/10.1016/j.ijrobp.2007.01.038
6.
6.M. Peroni, D. Ciardo, M. F. Spadea, M. Riboldi, S. Comi, D. Alterio, G. Baroni, and R. Orecchia, “Automatic segmentation and online virtualCT in head-and-neck adaptive radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 84, e427e433 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2012.04.003
7.
7.W. Lu, G. H. Olivera, Q. Chen, K. J. Ruchala, J. Haimerl, S. L. Meeks, K. M. Langen, and P. A. Kupelian, “Deformable registration of the planning image (kVCT) and the daily images (MVCT) for adaptive radiation therapy,” Phys. Med. Biol. 51, 43574374 (2006).
http://dx.doi.org/10.1088/0031-9155/51/17/015
8.
8.Q. Wu, Y. Chi, P. Y. Chen, D. J. Krauss, D. Yan, and A. Martinez, “Adaptive replanning strategies accounting for shrinkage in head and neck IMRT,” Int. J. Radiat. Oncol., Biol., Phys. 75, 924932 (2009).
http://dx.doi.org/10.1016/j.ijrobp.2009.04.047
9.
9.G. Christensen and H. J. Johnson, “Consistent image registration,” IEEE Trans. Med. Imaging 20, 568582 (2001).
http://dx.doi.org/10.1109/42.932742
10.
10.B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, “Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain,” Med. Image Anal. 12, 2641 (2008).
http://dx.doi.org/10.1016/j.media.2007.06.004
11.
11.V. Arsigny, O. Commowick, X. Pennec, and N. Ayache, “A log-euclidean framework for statistics on diffeomorphisms,” Medical Image Computing and Computer-Assisted Intervention (Springer, Berlin, Heidelberg, 2006), Vol. 9, pp. 924–931; see http://link.springer.com/chapter/10.1007%2F11866565_113.
http://dx.doi.org/10.1007/11866565_113
12.
12.R. Castillo, E. Castillo, R. Guerra, V. E. Johnson, T. McPhail, A. K. Garg, and T. Guerrero, “A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets,” Phys. Med. Biol. 54, 18491870 (2009).
http://dx.doi.org/10.1088/0031-9155/54/7/001
13.
13.P. Risholm, J. Balter, and W. M. Wells, “Estimation of delivered dose in radiotherapy: The influence of registration uncertainty,” Medical Image Computing and Computer-Assisted Intervention 14(Pt. 1), 548555 (2011); see http://link.springer.com/chapter/10.1007%2F978-3-642-23623-5_69.
http://dx.doi.org/10.1007/978-3-642-23623-5_69
14.
14.E. T. Bender and W. A. Tomé, “The utilization of consistency metrics for error analysis in deformable image registration,” Phys. Med. Biol. 54, 55615577 (2009).
http://dx.doi.org/10.1088/0031-9155/54/18/014
15.
15.R. Varadhan, G. Karangelis, K. Krishnan, and S. Hui, “A framework for deformable image registration validation in radiotherapy clinical applications,” J. Appl. Clin. Med. Phys. 14(1), 192213 (2013); see http://www.jacmp.org/index.php/jacmp/article/view/4066/2782.
http://dx.doi.org/10.1120/jacmp.v14i1.4066
16.
16.M. Hub, M. L. Kessler, and C. P. Karger, “A stochastic approach to estimate the uncertainty involved in b-spline image registration,” IEEE Trans. Med. Imaging 28, 17081716 (2009).
http://dx.doi.org/10.1109/TMI.2009.2021063
17.
17.A. Cherpak, M. Serban, J. Seuntjens, and J. E. Cygler, “4D dose-position verification in radiation therapy using the RADPOS system in a deformable lung phantom,” Med. Phys. 38, 179187 (2011).
http://dx.doi.org/10.1118/1.3515461
18.
18.U. J. Yeo, M. L. Taylor, J. R. Supple, R. L. Smith, L. Dunn, T. Kron, and R. D. Franich, “Is it sensible to deform dose? 3D experimental validation of dose-warping,” Med. Phys. 39, 50655072 (2012).
http://dx.doi.org/10.1118/1.4736534
19.
19.J. Pukala, S. L. Meeks, R. J. Staton, F. J. Bova, R. R. Maon, and K. M. Langen, “A virtual phantom library for the quantification of deformable image registration uncertainties in patients with cancers of the head and neck,” Med. Phys. 40, 111703 (8pp.) (2013).
http://dx.doi.org/10.1118/1.4823467
20.
20.N. K. Saleh-Sayah, E. Weiss, F. J. Salguero, and J. V. Siebers, “A distance to dose difference tool for estimating the required spatial accuracy of a displacement vector field,” Med. Phys. 38, 23182323 (2011).
http://dx.doi.org/10.1118/1.3572228
21.
21.D. Tilly, N. Tilly, and A. Ahnesj, “Dose mapping sensitivity to deformable registration uncertainties in fractionated radiotherapy applied to prostate proton treatments,” BMC Med. Phys. 13, 112 (2013).
http://dx.doi.org/10.1186/1756-6649-13-2
22.
22.M. Rosu, I. J. Chetty, J. M. Balter, M. L. Kessler, D. L. McShan, and R. K. Ten Haken, “Dose reconstruction in deforming lung anatomy: Dose grid size effects and clinical implications,” Med. Phys. 32, 24872495 (2005).
http://dx.doi.org/10.1118/1.1949749
23.
23.F. J. Salguero, N. K. Saleh-Sayah, C. Yan, and J. V. Siebers, “Estimation of three-dimensional intrinsic dosimetric uncertainties resulting from using deformable image registration for dose mapping,” Med. Phys. 38, 343353 (2011).
http://dx.doi.org/10.1118/1.3528201
24.
24.E. T. Bender, N. Hardcastle, and W. A. Tom, “On the dosimetric effect and reduction of inverse consistency and transitivity errors in deformable image registration for dose accumulation,” Med. Phys. 39, 272280 (2012).
http://dx.doi.org/10.1118/1.3666948
25.
25.M. J. Murphy, F. J. Salguero, J. V. Siebers, D. Staub, and C. Vaman, “A method to estimate the effect of deformable image registration uncertainties on daily dose mapping,” Med. Phys. 39, 573580 (2012).
http://dx.doi.org/10.1118/1.3673772
26.
26.H. Paganetti, H. Jiang, J. A. Adams, G. T. Chen, and E. Rietzel, “Monte Carlo simulations with time-dependent geometries to investigate effects of organ motion with high temporal resolution,” Int. J. Radiat. Oncol., Biol., Phys. 60, 942950 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.06.024
27.
27.E. Heath and J. Seuntjens, “A direct voxel tracking method for four-dimensional Monte Carlo dose calculations in deforming anatomy,” Med. Phys. 33, 434445 (2006).
http://dx.doi.org/10.1118/1.2163252
28.
28.H. Zhong and J. V. Siebers, “Monte Carlo dose mapping on deforming anatomy,” Phys. Med. Biol. 54, 58155830 (2009).
http://dx.doi.org/10.1088/0031-9155/54/19/010
29.
29.B. Schaly, J. A. Kempe, G. S. Bauman, J. J. Battista, and J. Van Dyk, “Tracking the dose distribution in radiation therapy by accounting for variable anatomy,” Phys. Med. Biol. 49, 791805 (2004).
http://dx.doi.org/10.1088/0031-9155/49/5/010
30.
30.S. Ourselin, A. Roche, G. Subsol, X. Pennec, and N. Ayache, “Reconstructing a 3D structure from serial histological sections,” Image Vision Comput. 19, 2531 (2001).
http://dx.doi.org/10.1016/S0262-8856(00)00052-4
31.
31.D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: Application to breast MR images,” IEEE Trans. Med. Imaging 18, 712721 (1999).
http://dx.doi.org/10.1109/42.796284
32.
32.M. Modat, G. R. Ridgway, Z. A. Taylor, M. Lehmann, J. Barnes, D. J. Hawkes, N. C. Fox, and S. Ourselin, “Fast free-form deformation using graphics processing units,” Comput. Methods Programs Biomed. 98, 278284 (2010).
http://dx.doi.org/10.1016/j.cmpb.2009.09.002
33.
33.M. Modat, M. J. Cardoso, P. Daga, D. Cash, N. C. Fox, and S. Ourselin, “Inverse-consistent symmetric free form deformation,” in Biomedical Image Registration, Lecture Notes in Computer Science Vol. 7359, edited by B. M. Dawant, G. E. Christensen, J. M. Fitzpatrick, and D. Rueckert, (Springer, Berlin, Heidelberg, 2012), pp. 7988; see http://link.springer.com/chapter/10.1007%2F978-3-642-31340-0_9.
http://dx.doi.org/10.1007/978-3-642-31340-0_9
34.
34.M. Modat, P. Daga, M. Cardoso, S. Ourselin, G. Ridgway, and J. Ashburner, “Parametric non-rigid registration using a stationary velocity field,” in 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), Breckenridge, Colorado (IEEE, 2012), pp. 145150; see http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6164745.
http://dx.doi.org/10.1109/MMBIA.2012.6164745
35.
35.C. Yan, H. Zhong, M. Murphy, E. Weiss, and J. V. Siebers, “A pseudoinverse deformation vector field generator and its applications,” Med. Phys. 37, 11171128 (2010).
http://dx.doi.org/10.1118/1.3301594
36.
36.M. Modat, J. R. McClelland, and S. Ourselin, “Lung registration using the NiftyReg package,” in Medical Image Analysis for the Clinic: A Grand Challenge, Workshop Proceedings from the 13th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), edited by B. van Ginneken, K. Murphy, T. Heimann, V. Pekar, and X. Den (Beijing, China, 2010), pp. 3342.
37.
37.C. Veiga, J. McClelland, K. Ricketts, D. D’Souza, and G. Royle, “Deformable registrations for head and neck cancer adaptive radiotherapy,” in Image-Guidance and Multimodal Dose Planning in Radiation Therapy Workshop of the 15th International Conference on Medical Image Com puting and Computer Assisted Intervention (MICCAI), Nice, France (2012).
38.
38.C. Veiga, J. McClelland, S. Moinuddin, K. Ricketts, M. Modat, S. Ourselin, D. D’Souza, and G. Royle, “Towards adaptive radiotherapy for head and neck patients: Validation of an in-house deformable registration algorithm,” J. Phys.: Conf. Ser. 489, 012083 (2014); see http://iopscience.iop.org/1742-6596/489/1/012083.
http://dx.doi.org/10.1088/1742-6596/489/1/012083.
39.
39.V. Grégoire, P. Levendag, K. K. Ang, J. Bernier, M. Braaksma, V. Budach, C. Chao, E. Coche, J. S. Cooper, G. Cosnard, A. Eisbruch, S. El-Sayed, B. Emami, C. Grau, M. Hamoir, N. Lee, P. Maingon, K. Muller, and H. Reychler, “CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC,RTOG consensus guidelines,” Radiother. Oncol. 69, 227236 (2003).
http://dx.doi.org/10.1016/j.radonc.2003.09.011
40.
40.T. E. Schultheiss, W. A. Tomé, and C. G. Orton, “It is not appropriate to deform dose along with deformable image registration in adaptive radiotherapy,” Med. Phys. 39, 65316533 (2012).
http://dx.doi.org/10.1118/1.4722968
41.
41.H. Zhong, J. Kim, and I. J. Chetty, “Analysis of deformable image registration accuracy using computational modeling,” Med. Phys. 37, 970979 (2010).
http://dx.doi.org/10.1118/1.3302141
42.
42.U. J. Yeo, J. R. Supple, M. L. Taylor, R. Smith, T. Kron, and R. D. Franich, “Performance of 12 DIR algorithms in low-contrast regions for mass and density conserving deformation,” Med. Phys. 40, 101701 (12pp.) (2013).
http://dx.doi.org/10.1118/1.4819945
43.
43.S. Nithiananthan, S. Schafer, D. J. Mirota, J. W. Stayman, W. Zbijewski, D. D. Reh, G. L. Gallia, and J. H. Siewerdsen, “Extra-dimensional demons: A method for incorporating missing tissue in deformable image registration,” Med. Phys. 39, 57185731 (2012).
http://dx.doi.org/10.1118/1.4747270
44.
44.J. Kim, M. M. Matuszak, K. Saitou, and J. M. Balter, “Distance-preserving rigidity penalty on deformable image registration of multiple skeletal components in the neck,” Med. Phys. 40, 121907 (10pp.) (2013).
http://dx.doi.org/10.1118/1.4828783
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/42/2/10.1118/1.4905050
Loading
/content/aapm/journal/medphys/42/2/10.1118/1.4905050
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/42/2/10.1118/1.4905050
2015-01-15
2016-09-24

Abstract

The aims of this work were to evaluate the performance of several deformable image registration (DIR) algorithms implemented in our in-house software (NiftyReg) and the uncertainties inherent to using different algorithms for dose warping.

The authors describe a DIR based adaptive radiotherapy workflow, using CT and cone-beam CT (CBCT) imaging. The transformations that mapped the anatomy between the two time points were obtained using four different DIR approaches available in NiftyReg. These included a standard unidirectional algorithm and more sophisticated bidirectional ones that encourage or ensure inverse consistency. The forward (CT-to-CBCT) deformation vector fields (DVFs) were used to propagate the CT Hounsfield units and structures to the daily geometry for “dose of the day” calculations, while the backward (CBCT-to-CT) DVFs were used to remap the dose of the day onto the planning CT (pCT). Data from five head and neck patients were used to evaluate the performance of each implementation based on geometrical matching, physical properties of the DVFs, and similarity between warped dose distributions. Geometrical matching was verified in terms of dice similarity coefficient (DSC), distance transform, false positives, and false negatives. The physical properties of the DVFs were assessed calculating the harmonic energy, determinant of the Jacobian, and inverse consistency error of the transformations. Dose distributions were displayed on the pCT dose space and compared using dose difference (DD), distance to dose difference, and dose volume histograms.

All the DIR algorithms gave similar results in terms of geometrical matching, with an average DSC of 0.85 ± 0.08, but the underlying properties of the DVFs varied in terms of smoothness and inverse consistency. When comparing the doses warped by different algorithms, we found a root mean square DD of 1.9% ± 0.8% of the prescribed dose (pD) and that an average of 9% ± 4% of voxels within the treated volume failed a 2%pD DD-test (DD). Larger DD was found within the high dose gradient (21% ± 6%) and regions where the CBCT quality was poorer (28% ± 9%). The differences when estimating the mean and maximum dose delivered to organs-at-risk were up to 2.0%pD and 2.8%pD, respectively.

The authors evaluated several DIR algorithms for CT-to-CBCT registrations. In spite of all methods resulting in comparable geometrical matching, the choice of DIR implementation leads to uncertainties in dose warped, particularly in regions of high gradient and/or poor imaging quality.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/42/2/1.4905050.html;jsessionid=4wiZh0JfLy2xH5M2ar_JW7Ac.x-aip-live-06?itemId=/content/aapm/journal/medphys/42/2/10.1118/1.4905050&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/42/2/10.1118/1.4905050&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/42/2/10.1118/1.4905050'
Right1,Right2,Right3,