Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/42/2/10.1118/1.4906241
1.
1.S. Vynckier, S. Derreumaux, F. Richard, A. Bol, C. Michel, and A. Wambersie, “Is it possible to verify directly a proton-treatment plan using positron emission tomography?,” Radiother. Oncol. 26(3), 275277 (1993).
http://dx.doi.org/10.1016/0167-8140(93)90271-9
2.
2.C. H. Min, H. R. Lee, C. H. Kim, and S. B. Lee, “Development of array-type prompt gamma measurement system for in vivo range verification in proton therapy,” Med. Phys. 39(3), 21002107 (2012).
http://dx.doi.org/10.1118/1.3694098
3.
3.C.-H. Min, C. H. Kim, M.-Y. Youn, and J.-W. Kim, “Prompt gamma measurements for locating the dose falloff region in the proton therapy,” Appl. Phys. Lett. 89(18), 183517 (2006).
http://dx.doi.org/10.1063/1.2378561
4.
4.J. C. Polf et al., “Measurement and calculation of characteristic prompt gamma ray spectra emitted during proton irradiation,” Phys. Med. Biol. 54, N519N527 (2009).
http://dx.doi.org/10.1088/0031-9155/54/22/N02
5.
5.M. Moteabbed, S. España, and H. Paganetti, “Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapy,” Phys. Med. Biol. 56(4), 10631082 (2011).
http://dx.doi.org/10.1088/0031-9155/56/4/012
6.
6.L. Sulak et al., “Experimental studies of the acoustic signature of proton beams traversing fluid media,” Nucl. Instrum. Methods 161(2), 203217 (1979).
http://dx.doi.org/10.1016/0029-554x(79)90386-0
7.
7.G. De Bonis, “Acoustic signals from proton beam interaction in water—Comparing experimental data and Monte Carlo simulation,” Nucl. Instrum. Methods Phys. Res., Sect. A 604(Suppl. 1–2), S199S202 (2009).
http://dx.doi.org/10.1016/j.nima.2009.03.072
8.
8.J. Tada, Y. Hayakawa, K. Hosono, and T. Inada, “Time resolved properties of acoustic pulses generated in water and in soft tissue by pulsed proton beam irradiation—A possibility of doses distribution monitoring in proton radiation therapy,” Med. Phys. 18(6), 11001104 (1991).
http://dx.doi.org/10.1118/1.596618
9.
9.L. M. Lyamshev, Radiation Acoustics (CRC, Boca Raton, Florida, 2004).
10.
10.R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)–reconstruction tomography,” Med. Phys. 22(10), 16051609 (1995).
http://dx.doi.org/10.1118/1.597429
11.
11.R. A. Kruger and P. Liu, “Photoacoustic ultrasound: Pulse production and detection of 0.5% Liposyn,” Med. Phys. 21(7), 11791184 (1994).
http://dx.doi.org/10.1118/1.597399
12.
12.Y. Yuan, D. Xing, and L. Xiang, “High-contrast photoacoustic imaging based on filtered back-projection algorithm with velocity potential integration,” Proc. SPIE 7519, 75190L-175190L-8 (2009).
http://dx.doi.org/10.1117/12.841448
13.
13.H. H. Barrett and W. Swindell, Radiological Imaging the Theory of Image Formation, Detection, and Processing (Academic, San Diego, 1981).
14.
14.G. Battistoni et al., “The fluka code: Description and benchmarking,” AIP Conf. Proc. 896(1), 3149 (2007).
http://dx.doi.org/10.1063/1.2720455
15.
15.A. Ferrari, J. Ranft, P. R. Sala, and A. Fassò, Fluka (Stanford Linear Accelerator Center, Stanford University, Stanford, CA, 2005).
16.
16.V. Moskvin et al., “A fluka Monte Carlo computational model of a scanning proton beam therapy nozzle at IU proton therapy center,” Med. Phys. 39, 3818 (2012).
http://dx.doi.org/10.1118/1.4735580
17.
17.K. Kurosu et al., “Optimization of gate and phits Monte Carlo code parameters for uniform scanning proton beam based on simulation with fluka general purpose code,” Nucl. Instrum. Methods Phys. Res., Sect. B 336, 4554 (2014).
http://dx.doi.org/10.1016/j.nimb.2014.06.009
18.
18.A.-C. Knopf and A. Lomax, “In vivo proton range verification: A review,” Phys. Med. Biol. 58(15), R131R160 (2013).
http://dx.doi.org/10.1088/0031-9155/58/15/R131
19.
19.J. Smeets et al., “Prompt gamma imaging with a slit camera for real-time range control in proton therapy,” Phys. Med. Biol. 57(11), 33713405 (2012).
http://dx.doi.org/10.1088/0031-9155/57/11/3371
20.
20.Y. Hayakawa et al., “Acoustic pulse generated in a patient during treatment by pulsed proton radiation beam,” Radiat. Oncol. Invest. 3(1), 4245 (1995).
http://dx.doi.org/10.1002/roi.2970030107
21.
21.R. A. Kruger, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography – Technical considerations,” Med. Phys. 26(9), 18321837 (1999).
http://dx.doi.org/10.1118/1.598688
22.
22.W. L. Kiser and R. A. Kruger, “Thermoacoustic computed tomography  – Limits to spatial resolution,” Proc. SPIE 3659, 895905 (1999).
http://dx.doi.org/10.1117/12.349572
23.
23.M. Xu and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003).
http://dx.doi.org/10.1103/physreve.67.056605
24.
24.M.-L. Li and C.-C. Cheng, “Reconstruction of photoacoustic tomography with finite-aperture detectors: Deconvolution of the spatial impulse response,” Proc. SPIE 7564(1), 75642S (2010).
http://dx.doi.org/10.1117/12.841639
25.
25.K. Wang et al., “An imaging model incorporating ultrasonic transducer properties for three-dimenstional optoacoustic tomography,” IEEE Trans. Med. Imaging 30(2), 203214 (2011).
http://dx.doi.org/10.1109/TMI.2010.2072514
26.
26.A. Rosenthal, V. Ntziachristos, and D. Razansky, “Model-based optoacoustic inversion with arbitrary-shape detectors,” Med. Phys. 38(7), 42854295 (2011).
http://dx.doi.org/10.1118/1.3589141
27.
27.S. Manohar et al., “Concomitant speed-of-sound tomography in photoacoustic imaging,” Appl. Phys. Lett. 91(13), 131911 (2007).
http://dx.doi.org/10.1063/1.2789689
28.
28.C. Huang et al., “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogenous media,” IEEE Trans. Med. Imaging 32(6), 10971110 (2013).
http://dx.doi.org/10.1109/tmi.2013.2254496
29.
29.B. E. Treeby, E. Z. Zhang, and B. T. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Probl. 26(11), 115003 (2010).
http://dx.doi.org/10.1088/0266-5611/26/11/115003
30.
30.M. A. Anastasio et al., “Improving limited-view reconstruction in photoacoustic tomography by incorporating a priori boundary information,” Proc. SPIE 6856(1), 68561B (2008).
http://dx.doi.org/10.1117/12.764178
31.
31.C. Huang, A. A. Oraevsky, and M. A. Anastasio, “Investigation of limited-view image reconstruction in optoacoustic tomography employing a priori structural information,” Proc. SPIE 7800, 780004 (2010).
http://dx.doi.org/10.1117/12.861005
32.
32.L. A. Kunyansky, “Thermoacoustic tomography with detectors on an open curve: An efficient reconstruction algorithm,” Inverse Probl. 24, 118 (2008).
http://dx.doi.org/10.1088/0266-5611/24/5/055021
33.
33.L. A. Kunyansky, “Explicit inversion formulae for the spherical mean Radon transform,” Inverse Probl. 23, 373383 (2007).
http://dx.doi.org/10.1088/0266-5611/23/1/021
34.
34.M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 17 (2005).
http://dx.doi.org/10.1103/physreve.75.059903
35.
35.J. N. Matthews, “Accelerators shrink to meet growing demand for proton therapy,” Phys. Today 62(3), 2224 (2009).
http://dx.doi.org/10.1063/1.3099570
36.
36.S. Peggs, T. Satogata, and J. FLanz, “A survey of Hadron Therapy Accelerator Technologies,” IEEE Conf. Proc (PAC07) C070625: 115–119 (2007).
37.
37.J. Flanz and A. Smith, “Technology for proton therapy,” Cancer J. 15(4), 292297 (2009).
http://dx.doi.org/10.1097/PPO.0b013e3181b11dd0
38.
38.G. J. Caporaso et al., “A compact Linac for intensity modulated proton therapy based on a dielectric wall accelerator,” Phys. Med. 24(2), 98101 (2008).
http://dx.doi.org/10.1016/j.ejmp.2008.01.010
39.
39.U. Linz and J. Alonso, “What will it take for laser driven proton accelerators to be applied to tumor therapy?,” Phys. Rev. Spec. Top.–Accel. Beams 10(9), 094801 (2007).
http://dx.doi.org/10.1103/physrevstab.10.094801
40.
40.M. Murakami et al., “Current status of the HIBMC, providing particle beam radiation therapy for more than 2,600 patients the prospects of laser-driven proton radiotherapy,” in World Congress on Medical Physics Biomedical Engineering, September 7–12 2009, Munich, Germany, edited by O. Dössel and W. C. Schlegel (Springer Berlin Heidelberg, Berlin, 2009), pp. 878882.
41.
41.H. Schwoerer et al., “Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets,” Nature 439(7075), 445448 (2006).
http://dx.doi.org/10.1038/nature04492
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/42/2/10.1118/1.4906241
Loading
/content/aapm/journal/medphys/42/2/10.1118/1.4906241
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/42/2/10.1118/1.4906241
2015-01-26
2016-09-30

Abstract

The objective of this study is to establish the feasibility of using radiation-induced acoustics to measure the range and Bragg peak dose from a pulsed proton beam. Simulation studies implementing a prototype scanner design based on computed tomographic methods were performed to investigate the sensitivity to proton range and integral dose.

Derived from thermodynamic wave equation, the pressure signals generated from the dose deposited from a pulsed proton beam with a 1 cm lateral beam width and a range of 16, 20, and 27 cm in water using Monte Carlo methods were simulated. The resulting dosimetric images were reconstructed implementing a 3D filtered backprojection algorithm and the pressure signals acquired from a 71-transducer array with a cylindrical geometry (30 × 40 cm) rotated over 2 about its central axis. Dependencies on the detector bandwidth and proton beam pulse width were performed, after which, different noise levels were added to the detector signals (using 1 s pulse width and a 0.5 MHz cutoff frequency/hydrophone) to investigate the statistical and systematic errors in the proton range (at 20 cm) and Bragg peak dose (of 1 cGy).

The reconstructed radioacoustic computed tomographic image intensity was shown to be linearly correlated to the dose within the Bragg peak. And, based on noise dependent studies, a detector sensitivity of 38 mPa was necessary to determine the proton range to within 1.0 mm (full-width at half-maximum) (systematic error < 150 μm) for a 1 cGy Bragg peak dose, where the integral dose within the Bragg peak was measured to within 2%. For existing hydrophone detector sensitivities, a Bragg peak dose of 1.6 cGy is possible.

This study demonstrates that computed tomographic scanner based on ionizing radiation-induced acoustics can be used to verify dose distribution and proton range with centi-Gray sensitivity. Realizing this technology into the clinic has the potential to significantly impact beam commissioning, treatment verification during particle beam therapy and image guided techniques.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/42/2/1.4906241.html;jsessionid=RQYdXL7dkOIxCo8ghWrbm1Pz.x-aip-live-03?itemId=/content/aapm/journal/medphys/42/2/10.1118/1.4906241&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/42/2/10.1118/1.4906241&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/42/2/10.1118/1.4906241'
Right1,Right2,Right3,