Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/42/3/10.1118/1.4907991
1.
1.F. Kong, R. T. Haken, A. Eisbruch, and T. S. Lawrence, “Non-small cell lung cancer therapy-related pulmonary toxicity: An update on radiation pneumonitis and fibrosis,” Semin. Oncol. 32, 4254 (2005).
http://dx.doi.org/10.1053/j.seminoncol.2005.03.009
2.
2.S. S. Yom, Z. Liao, H. H. Liu, S. L. Tucker, C. S. Hu, X. Wei, X. Wang, S. Wang, R. Mohan, J. D. Cox, and R. Komaki, “Initial evaluation of treatment-related pneumonitis in advanced-stage non-small-cell lung cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 68, 94102 (2007).
http://dx.doi.org/10.1016/j.ijrobp.2006.12.031
3.
3.S. Sura, V. Gupta, E. Yorke, A. Jackson, H. Amols, and K. E. Rosenzweig, “Intensity-modulated radiation therapy (IMRT) for inoperable non-small cell lung cancer: The Memorial Sloan-Kettering Cancer Center (MSKCC) experience,” Radiother. Oncol. 87, 1723 (2008).
http://dx.doi.org/10.1016/j.radonc.2008.02.005
4.
4.D. A. Hoover, R. H. Reid, E. Wong, L. Stitt, E. Sabondjian, G. B. Rodrigues, J. K. Jaswal, and B. P. Yaremko, “SPECT-based functional lung imaging for the prediction of radiation pneumonitis: A clinical and dosimetric correlation,” J. Med. Imaging Radiat. Oncol. 58, 214222 (2014).
http://dx.doi.org/10.1111/1754-9485.12145
5.
5.Y. Vinogradskiy, R. Castillo, E. Castillo, S. L. Tucker, Z. Liao, T. Guerrero, and M. K. Martel, “Use of 4-Dimensional computed tomography-based ventilation imaging to correlate lung dose and function with clinical outcomes,” Int. J. Radiat. Oncol., Biol., Phys. 86, 366371 (2013).
http://dx.doi.org/10.1016/j.ijrobp.2013.01.004
6.
6.B. P. Yaremko, T. M. Guerrero, J. Noyola-Martinez, R. Guerra, D. G. Lege, L. T. Nguyen, P. A. Balter, J. D. Cox, and R. Komaki, “Reduction of normal lung irradiation in locally advanced non-small-cell lung cancer patients, using ventilation images for functional avoidance,” Int. J. Radiat. Oncol., Biol., Phys. 68, 562571 (2007).
http://dx.doi.org/10.1016/j.ijrobp.2007.01.044
7.
7.E. L. Bates, C. M. Bragg, J. M. Wild, M. Q. Hatton, and R. H. Ireland, “Functional image-based radiotherapy planning for non-small cell lung cancer: A simulation study,” Radiother. Oncol. 93, 3236 (2009).
http://dx.doi.org/10.1016/j.radonc.2009.05.018
8.
8.T. Yamamoto, S. Kabus, J. von Berg, C. Lorenz, and P. J. Keall, “Impact of four-dimensional computed tomography pulmonary ventilation imaging-based functional avoidance for lung cancer radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 79, 279288 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2010.02.008
9.
9.T. Kimura, I. Nishibuchi, Y. Murakami, M. Kenjo, Y. Kaneyasu, and Y. Nagata, “Functional image-guided radiotherapy planning in respiratory-gated intensity-modulated radiotherapy for lung cancer patients with chronic obstructive pulmonary disease,” Int. J. Radiat. Oncol., Biol., Phys. 82, e663e670 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2011.08.016
10.
10.S. Yuan, K. A. Frey, M. D. Gross, J. A. Hayman, D. Arenberg, X. Cai, N. Ramnath, K. Hassan, J. Moran, A. Eisbruch, R. K. Ten Haken, and F. Kong, “Changes in global function and regional ventilation and perfusion on SPECT during the course of radiotherapy in patients with non-small-cell lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. 82, e631e638 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2011.07.044
11.
11.X. Meng, K. Frey, M. Matuszak, S. Paul, R. Ten Haken, J. Yu, and F. Kong, “Changes in functional lung regions during the course of radiation therapy and their potential impact on lung dosimetry for non-small cell lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. 89, 145151 (2014).
http://dx.doi.org/10.1016/j.ijrobp.2014.01.044
12.
12.Y. Y. Vinogradskiy, R. Castillo, E. Castillo, A. Chandler, M. K. Martel, and T. Guerrero, “Use of weekly 4DCT-based ventilation maps to quantify changes in lung function for patients undergoing radiation therapy,” Med. Phys. 39, 289298 (2012).
http://dx.doi.org/10.1118/1.3668056
13.
13.K. Suga, “Technical and analytical advances in pulmonary ventilation SPECT with xenon-133 gas and Tc-99m-Technegas,” Ann. Nucl. Med. 16, 303310 (2002).
http://dx.doi.org/10.1007/BF02988614
14.
14.J. Sonke, L. Zijp, P. Remeijer, and M. van Herk, “Respiratory correlated cone beam CT,” Med. Phys. 32, 11761186 (2005).
http://dx.doi.org/10.1118/1.1869074
15.
15.T. G. Purdie, D. J. Moseley, J. Bissonnette, M. B. Sharpe, K. Franks, A. Bezjak, and D. A. Jaffray, “Respiration correlated cone-beam computed tomography and 4DCT for evaluating target motion in stereotactic lung radiation therapy,” Acta Oncol. 45, 915922 (2006).
http://dx.doi.org/10.1080/02841860600907345
16.
16.W. Takahashi, H. Yamashita, S. Kida, Y. Masutani, A. Sakumi, K. Ohtomo, K. Nakagawa, and A. Haga, “Verification of planning target volume settings in volumetric modulated arc therapy for stereotactic body radiation therapy by using in-treatment 4-Dimensional cone beam computed tomography,” Int. J. Radiat. Oncol., Biol., Phys. 86, 426431 (2013).
http://dx.doi.org/10.1016/j.ijrobp.2013.02.019
17.
17.B. A. Simon, “Non-invasive imaging of regional lung function using x-ray computed tomography,” J. Clin. Monit. Comput. 16, 433442 (2000).
http://dx.doi.org/10.1023/A:1011444826908
18.
18.T. M. Guerrero, K. Sanders, E. Castillo, Y. Zhang, L. Bidaut, T. Pan, and R. Komaki, “Dynamic ventilation imaging from four-dimensional computed tomography,” Phys. Med. Biol. 51, 777791 (2006).
http://dx.doi.org/10.1088/0031-9155/51/4/002
19.
19.J. M. Reinhardt, K. Ding, K. Cao, G. E. Christensen, E. A. Hoffman, and S. V. Bodas, “Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation,” Med. Image Anal. 12, 752763 (2008).
http://dx.doi.org/10.1016/j.media.2008.03.007
20.
20.K. Ding, K. Cao, M. K. Fuld, K. Du, G. E. Christensen, E. A. Hoffman, and J. M. Reinhardt, “Comparison of image registration based measures of regional lung ventilation from dynamic spiral CT with Xe-CT,” Med. Phys. 39, 50845098 (2012).
http://dx.doi.org/10.1118/1.4736808
21.
21.J. Kipritidis, S. Siva, M. S. Hofman, J. Callahan, R. J. Hicks, and P. J. Keall, “Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using 68Ga-labeled nanoparticles,” Med. Phys. 41, 011910 (12pp.) (2014).
http://dx.doi.org/10.1118/1.4856055
22.
22.T. Yamamoto, S. Kabus, J. von Berg, C. Lorenz, M. L. Goris, B. W. Loo, Jr., and P. Keall, “Evaluation of four-dimensional (4D) computed tomography (CT) pulmonary ventilation imaging by comparison with single photon emission computed tomography (SPECT) scans for a lung cancer patient,” in Proceedings of the Third International Workshop on Pulmonary Image Analysis, MICCAI, Beijing, China, 2010 (2010), pp. 117128 , http://www.lungworkshop.org/2010/proc2010/yamamoto.pdf.
23.
23.K. Du, J. E. Bayouth, K. Cao, G. E. Christensen, K. Ding, and J. M. Reinhardt, “Reproducibility of registration-based measures of lung tissue expansion,” Med. Phys. 39, 15951608 (2012).
http://dx.doi.org/10.1118/1.3685589
24.
24.K. Du, J. M. Reinhardt, G. E. Christensen, K. Ding, and J. E. Bayouth, “Respiratory effort correction strategies to improve the reproducibility of lung expansion measurements,” Med. Phys. 40, 123504(15pp.) (2013).
http://dx.doi.org/10.1118/1.4829519
25.
25.N. N. Mistry, T. Diwanji, X. Shi, S. Pokharel, S. Feigenberg, S. M. Scharf, and W. D. D’Souza, “Evaluation of fractional regional ventilation using 4D-CT and effects of breathing maneuvers on ventilation,” Int. J. Radiat. Oncol., Biol., Phys. 87, 825831 (2013).
http://dx.doi.org/10.1016/j.ijrobp.2013.07.032
26.
26.K. Latifi, T. Huang, V. Feygelman, M. M. Budzevich, E. G. Moros, T. J. Dilling, C. W. Stevens, W. van Elmpt, A. Dekker, and G. G. Zhang, “Effects of quantum noise in 4D-CT on deformable image registration and derived ventilation data,” Phys. Med. Biol. 58, 76617672 (2013).
http://dx.doi.org/10.1088/0031-9155/58/21/7661
27.
27.S. Leng, J. Zambelli, R. Tolakanahalli, B. Nett, P. Munro, J. Star-Lack, B. Paliwal, and G. Chen, “Streaking artifacts reduction in four-dimensional cone-beam computed tomography,” Med. Phys. 35, 46494659 (2008).
http://dx.doi.org/10.1118/1.2977736
28.
28.C. Shieh, J. Kipritidis, R. T. O’Brien, Z. Kuncic, and P. J. Keall, “Image quality in thoracic 4D cone-beam CT: A sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing,” Med. Phys. 41, 041912 (18pp.) (2014).
http://dx.doi.org/10.1118/1.4868510
29.
29.W. Bai and M. Brady, “Regularized B-spline deformable registration for respiratory motion correction in PET images,” Phys. Med. Biol. 54, 27192736 (2009).
http://dx.doi.org/10.1088/0031-9155/54/9/008
30.
30.M. Brehm, P. Paysan, M. Oelhafen, P. Kunz, and M. Kachelrieß, “Self-adapting cyclic registration for motion-compensated cone-beam CT in image-guided radiation therapy,” Med. Phys. 39, 76037618 (2012).
http://dx.doi.org/10.1118/1.4766435
31.
31.N. O. Roman, W. Shepherd, N. Mukhopadhyay, G. D. Hugo, and E. Weiss, “Interfractional positional variability of fiducial markers and primary tumors in locally advanced non-small-cell lung cancer during audiovisual biofeedback radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 83, 15661572 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2011.10.051
32.
32.S. Balik, E. Weiss, N. Jan, N. Roman, W. C. Sleeman, M. Fatyga, G. E. Christensen, C. Zhang, M. J. Murphy, J. Lu, P. Keall, J. F. Williamson, and G. D. Hugo, “Evaluation of 4-dimensional computed tomography to 4-dimensional cone-beam computed tomography deformable image registration for lung cancer adaptive radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 86, 372379 (2013).
http://dx.doi.org/10.1016/j.ijrobp.2012.12.023
33.
33.L. A. Feldkamp, L. C. Davis, and J. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. A 1, 612619 (1984).
http://dx.doi.org/10.1364/JOSAA.1.000612
34.
34.D. A. Low and J. F. Dempsey, “Evaluation of the gamma dose distribution comparison method,” Med. Phys. 30, 24552464 (2003).
http://dx.doi.org/10.1118/1.1598711
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/42/3/10.1118/1.4907991
Loading
/content/aapm/journal/medphys/42/3/10.1118/1.4907991
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/42/3/10.1118/1.4907991
2015-02-20
2016-09-29

Abstract

Adaptive ventilation guided radiation therapy could minimize the irradiation of healthy lung based on repeat lung ventilation imaging (VI) during treatment. However the efficacy of adaptive ventilation guidance requires that interfraction (e.g., week-to-week), ventilation changes are not washed out by intrafraction (e.g., pre- and postfraction) changes, for example, due to patient breathing variability. The authors hypothesize that patients undergoing lung cancer radiation therapy exhibit larger interfraction ventilation changes compared to intrafraction function changes. To test this, the authors perform the first comparison of interfraction and intrafraction lung VI pairs using four-dimensional cone beam CT ventilation imaging (4D-CBCT VI), a novel technique for functional lung imaging.

The authors analyzed a total of 215 4D-CBCT scans acquired for 19 locally advanced non-small cell lung cancer (LA-NSCLC) patients over 4–6 weeks of radiation therapy. This set of 215 scans was sorted into 56 interfraction pairs (including first day scans and each of treatment weeks 2, 4, and 6) and 78 intrafraction pairs (including pre/postfraction scans on the same-day), with some scans appearing in both sets. VIs were obtained from the Jacobian determinant of the transform between the 4D-CBCT end-exhale and end-inhale images after deformable image registration. All VIs were deformably registered to their corresponding planning CT and normalized to account for differences in breathing effort, thus facilitating image comparison in terms of (i) voxelwise Spearman correlations, (ii) mean image differences, and (iii) gamma pass rates for all interfraction and intrafraction VI pairs. For the side of the lung ipsilateral to the tumor, we applied two-sided t-tests to determine whether interfraction VI pairs were more different than intrafraction VI pairs.

The (mean ± standard deviation) Spearman correlation for interfraction VI pairs was , which was significantly lower than for intrafraction pairs ( , = 0.0002). Conversely, mean absolute ventilation differences were larger for interfraction pairs than for intrafraction pairs, with and , respectively ( < 10−15). Applying a gamma analysis with ventilation/distance tolerance of 25%/10 mm, we observed mean pass rate of (69% ± 20%) for interfraction VIs, which was significantly lower compared to intrafraction pairs (80% ± 15%, with ∼ 0.0003). Compared to the first day scans, all patients experienced at least one subsequent change in median ipsilateral ventilation ≥10%. Patients experienced both positive and negative ventilation changes throughout treatment, with the maximum change occurring at different weeks for different patients.

The authors’ data support the hypothesis that interfraction ventilation changes are larger than intrafraction ventilation changes for LA-NSCLC patients over a course of conventional lung cancer radiation therapy. Longitudinal ventilation changes are observed to be highly patient-dependent, supporting a possible role for adaptive ventilation guidance based on repeat 4D-CBCT VIs. We anticipate that future improvement of 4D-CBCT image reconstruction algorithms will improve the capability of 4D-CBCT VI to resolve interfraction ventilation changes.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/42/3/1.4907991.html;jsessionid=l2E9T_Pu16QmBSBDHS9SmNQj.x-aip-live-06?itemId=/content/aapm/journal/medphys/42/3/10.1118/1.4907991&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/42/3/10.1118/1.4907991&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/42/3/10.1118/1.4907991'
Right1,Right2,Right3,