Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/42/3/10.1118/1.4908224
1.
1.T. R. Mackie, “History of tomotherapy,” Phys. Med. Biol. 51, R427R453 (2006).
http://dx.doi.org/10.1088/0031-9155/51/13/R24
2.
2.T. R. Mackie, T. Holmes, S. Swerdloff, P. Reckwerdt, J. O. Deasy, J. Yang, B. Paliwal, and T. Kinsella, “Tomotherapy: A new concept for the delivery of dynamic conformal radiotherapy,” Med. Phys. 20, 17091719 (1993).
http://dx.doi.org/10.1118/1.596958
3.
3.C. X. Yu, “Intensity-modulated arc therapy with dynamic multileaf collimation: An alternative to tomotheraphy,” Phys. Med. Biol. 40(9), 1435–1449 (1995).
http://dx.doi.org/10.1088/0031-9155/40/9/004
4.
4.K. Otto, “Volumetric modulated arc therapy: IMRT in a single gantry arc,” Med. Phys. 35, 310317 (2008).
http://dx.doi.org/10.1118/1.2818738
5.
5.C. Wang, S. Luan, G. Tang, D. Z. Chen, M. A. Earl, and X. Y. Cedric, “Arc-modulated radiation therapy (amrt): A single-arc form of intensity-modulated arc therapy,” Phys. Med. Biol. 53, 62916303 (2008).
http://dx.doi.org/10.1088/0031-9155/53/22/002
6.
6.S. Ulrich, S. Nill, and U. Oelfke, “Development of an optimization concept for arc-modulated cone beam therapy,” Phys. Med. Biol. 52, 40994119 (2007).
http://dx.doi.org/10.1088/0031-9155/52/14/006
7.
7.S. M. Crooks, X. Wu, C. Takita, M. Watzich, and L. Xing, “Aperture modulated arc therapy,” Phys. Med. Biol. 48, 13331344 (2003).
http://dx.doi.org/10.1088/0031-9155/48/10/307
8.
8.C. Cameron, “Sweeping-window arc therapy: An implementation of rotational IMRT with automatic beam-weight calculation,” Phys. Med. Biol. 50, 43174336 (2005).
http://dx.doi.org/10.1088/0031-9155/50/18/006
9.
9.X. Y. Cedric and G. Tang, “Intensity-modulated arc therapy: Principles, technologies and clinical implementation,” Phys. Med. Biol. 56, R31R54 (2011).
http://dx.doi.org/10.1088/0031-9155/56/5/R01
10.
10. For clarity: By VMAT planning, we refer to treatment planning for conventional hardware, i.e. Linacs equipped with MLCs. We exclude specialized hardware such as tomotherapy.
11.
11. An exception are dose-volume constraints, which are nonconvex. However, the nonconvexity does typically not coarse difficulties in finding high quality IMRT plans.
12.
12.T. Bortfeld, “The number of beams in IMRT: Theoretical investigations and implications for single-arc IMRT,” Phys. Med. Biol. 55, 8397 (2010).
http://dx.doi.org/10.1088/0031-9155/55/1/006
13.
13.J. D. Fenwick and J. Pardo-Montero, “Numbers of beam angles required for near-optimal IMRT: Theoretical limits and numerical studies,” Med. Phys. 38, 45184530 (2011).
http://dx.doi.org/10.1118/1.3606457
14.
14. Unless the gantry stops.
15.
15. Unfortunately, current VMAT implementations do not always realize this potential.
16.
16.B. Hårdemark, A. Liander, H. Rehbinder, and J. Löf, “Direct machine parameter optimization with RayMachine in Pinnacle3,” White paper (RaySearch Laboratories, Stockholm, Sweden, 2003).
17.
17.A. Cassioli and J. Unkelbach, “Aperture shape optimization for IMRT treatment planning,” Phys. Med. Biol. 58, 301318 (2013).
http://dx.doi.org/10.1088/0031-9155/58/2/301
18.
18.W. De Gersem, F. Claus, C. De Wagter, B. Van Duyse, and W. De Neve, “Leaf position optimization for step-and-shoot IMRT,” Int. J. Radiat. Oncol., Biol., Phys. 51, 13711388 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)02607-4
19.
19.D. M. Shepard, M. A. Earl, X. A. Li, S. Naqvi, and C. Yu, “Direct aperture optimization: A turnkey solution for step-and-shoot IMRT,” Med. Phys. 29, 10071018 (2002).
http://dx.doi.org/10.1118/1.1477415
20.
20.Y. Li, J. Yao, and D. Yao, “Genetic algorithm based deliverable segments optimization for static intensity-modulated radiotherapy,” Phys. Med. Biol. 48, 33533374 (2003).
http://dx.doi.org/10.1088/0031-9155/48/20/007
21.
21.H. E. Romeijn, R. K. Ahuja, J. F. Dempsey, and A. Kumar, “A column generation approach to radiation therapy treatment planning using aperture modulation,” SIAM J. Optim. 15, 838862 (2005).
http://dx.doi.org/10.1137/040606612
22.
22.F. Carlsson, “Combining segment generation with direct step-and-shoot optimization in intensity-modulated radiation therapy,” Med. Phys. 35, 38283838 (2008).
http://dx.doi.org/10.1118/1.2964096
23.
23. The conversion of aperture weights to gantry speed and dose rate is performed by the machine controller outside of the TPS. Therefore, the TPS relies on approximate assumptions on the controller to estimate delivery time (see also discussion in Sec. 4.B)
24.
24.K. Bzdusek, H. Friberger, K. Eriksson, B. Hårdemark, D. Robinson, and M. Kaus, “Development and evaluation of an efficient approach to volumetric arc therapy planning,” Med. Phys. 36, 23282339 (2009).
http://dx.doi.org/10.1118/1.3132234
25.
25. In this paper, we do not review FMO methods as this component does not require VMAT specific modifications. However, regularization of the FMO problem to favor smooth fluence maps is typically recommended for arc sequencing.
26.
26.S. Luan, C. Wang, D. Cao, D. Z. Chen, D. M. Shepard, and X. Y. Cedric, “Leaf-sequencing for intensity-modulated arc therapy using graph algorithms,” Med. Phys. 35, 6169 (2008).
http://dx.doi.org/10.1118/1.2818731
27.
27.D. Z. Chen, S. Luan, and C. Wang, “Coupled path planning, region optimization, and applications in intensity-modulated radiation therapy,” Algorithmica 60, 152174 (2011).
http://dx.doi.org/10.1007/s00453-009-9363-7
28.
28.D. Craft, D. McQuaid, J. Wala, W. Chen, E. Salari, and T. Bortfeld, “Multicriteria VMAT optimization,” Med. Phys. 39, 686696 (2012).
http://dx.doi.org/10.1118/1.3675601
29.
29.E. Salari, J. Wala, and D. Craft, “Exploring trade-offs between VMAT dose quality and delivery efficiency using a network optimization approach,” Phys. Med. Biol. 57, 55875600 (2012).
http://dx.doi.org/10.1088/0031-9155/57/17/5587
30.
30. The nonlinear relations (6) and (7) define the objective function, but are not formal constraints themselves.
31.
31.P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm for large-scale constrained optimization,” SIAM Rev. 47, 99131 (2005).
http://dx.doi.org/10.1137/S0036144504446096
32.
32.J. L. Bedford, “Treatment planning for volumetric modulated arc therapy,” Med. Phys. 36, 51285138 (2009).
http://dx.doi.org/10.1118/1.3240488
33.
33.E. Wild, M. Bangert, S. Nill, and U. Oelfke, “Non-coplanar VMAT for nasopharyngeal tumors: Plan quality versus treatment time” (2015).
34.
34. The gradient (12) exists everywhere if the objective function is one-time continuously differentiable in dose and zj is smooth relative to the leaf positions. The piecewise linear definition of zj according to Fig. 3 does not possess the necessary smoothness, but this issue can be resolved through the definition of a piecewise smooth gradient or the use of a more sophisticated physical fluence model.
35.
35.E. Vanetti, G. Nicolini, J. Nord, J. Peltola, A. Clivio, A. Fogliata, and L. Cozzi, “On the role of the optimization algorithm of rapidarc for volumetric modulated arc therapy on plan quality and efficiency,” Med. Phys. 38, 58445856 (2011).
http://dx.doi.org/10.1118/1.3641866
36.
36.C. Men, H. E. Romeijn, X. Jia, and S. B. Jiang, “Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT),” Med. Phys. 37, 57875791 (2010).
http://dx.doi.org/10.1118/1.3491675
37.
37.F. Peng, X. Jia, X. Gu, M. A. Epelman, H. E. Romeijn, and S. B. Jiang, “A new column-generation-based algorithm for VMAT treatment plan optimization,” Phys. Med. Biol. 57, 45694588 (2012).
http://dx.doi.org/10.1088/0031-9155/57/14/4569
38.
38.D. Papp and J. Unkelbach, “Direct leaf trajectory optimization for volumetric modulated arc therapy planning with sliding window delivery,” Med. Phys. 41, 011701(10pp.) (2014).
http://dx.doi.org/10.1118/1.4835435
39.
39. Note that, in order to communicate the VMAT plan through DICOM, the arrival/departure times have to be converted into a different piecewise linear leaf trajectory, i.e. control points.
40.
40.M. M. Matuszak, J. M. Steers, T. Long, D. L. McShan, B. A. Fraass, H. E. Romeijn, and R. K. Ten Haken, “FusionArc optimization: A hybrid volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) planning strategy,” Med. Phys. 40, 071713 (10pp.) (2013).
http://dx.doi.org/10.1118/1.4808153
41.
41.R. Li and L. Xing, “An adaptive planning strategy for station parameter optimized radiation therapy (SPORT): Segmentally boosted VMAT,” Med. Phys. 40, 050701(9pp.) (2013).
http://dx.doi.org/10.1118/1.4802748
42.
42. In addition, planning comparisons between IMRT and VMAT do not always enforce the same planning criteria for both plans rigorously. For example, achiving target dose homogeneity and conformity in complex geometries tends to require strongly modulated fluence maps (requiring larger treatment times). If homogeneity is sacrificed in a VMAT plan more than in an IMRT plan, observed delivery time savings cannot be truly assigned to the delivery technique.
43.
43.R. Bokrantz, “Multicriteria optimization for volumetric-modulated arc therapy by decomposition into a fluence-based relaxation and a segment weight-based restriction,” Med. Phys. 39, 67126725 (2012).
http://dx.doi.org/10.1118/1.4754652
44.
44.D. Craft, D. Papp, and J. Unkelbach, “Plan averaging for multicriteria navigation of sliding window IMRT and VMAT,” Med. Phys. 41, 021709 (5pp.) (2014).
http://dx.doi.org/10.1118/1.4859295
45.
45.Y. Yang, P. Zhang, L. Happersett, J. Xiong, J. Yang, M. Chan, K. Beal, G. Mageras, and M. Hunt, “Choreographing couch and collimator in volumetric modulated arc therapy,” Int. J. Radiat. Oncol., Biol., Phys. 80, 12381247 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2010.10.016
46.
46.M. Bangert and U. Oelfke, “Spherical cluster analysis for beam angle optimization in intensity-modulated radiation therapy treatment planning,” Phys. Med. Biol. 55, 6023 (2010).
http://dx.doi.org/10.1088/0031-9155/55/19/025
47.
47.P. W. J. Voet, S. Breedveld, M. L. P. Dirkx, P. C. Levendag, and B. J. M. Heijmen, “Integrated multicriterial optimization of beam angles and intensity profiles for coplanar and noncoplanar head and neck IMRT and implications for VMAT,” Med. Phys. 39, 4858 (2012).
http://dx.doi.org/10.1118/1.4736803
48.
48.S. Breedveld, P. R. M. Storchi, P. W. J. Voet, and B. J. M. Heijmen, “iCycle: Integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans,” Med. Phys. 39, 951963 (2012).
http://dx.doi.org/10.1118/1.3676689
49.
49.M. Bangert, P. Ziegenhein, and U. Oelfke, “Comparison of beam angle selection strategies for intracranial IMRT,” Med. Phys. 40, 011716 (11pp.) (2013).
http://dx.doi.org/10.1118/1.4771932
50.
50.J. Krayenbuehl, J. B. Davis, and I. F. Ciernik, “Dynamic intensity-modulated non-coplanar arc radiotherapy (INCA) for head and neck cancer,” Radiother. Oncol. 81, 151157 (2006).
http://dx.doi.org/10.1016/j.radonc.2006.09.004
51.
51.S. F. Shaitelman, L. H. Kim, D. Yan, A. A. Martinez, F. A. Vicini, and I. S. Grills, “Continuous arc rotation of the couch therapy for the delivery of accelerated partial breast irradiation: A treatment planning analysis,” Int. J. Radiat. Oncol., Biol., Phys. 80, 771778 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2010.03.004
52.
52.C. C. Popescu, W. A. Beckham, V. V. Patenaude, I. A. Olivotto, and M. T. Vlachaki, “Simultaneous couch and gantry dynamic arc rotation (CG-Darc) in the treatment of breast cancer with accelerated partial breast irradiation (APBI): A feasibility study,” J. Appl. Clin. Med. Phys. 14, 40354044 (2013).
53.
53.G. Smyth, J. C. Bamber, P. M. Evans, and J. L. Bedford, “Trajectory optimization for dynamic couch rotation during volumetric modulated arc radiotherapy,” Phys. Med. Biol. 58, 81638177 (2013).
http://dx.doi.org/10.1088/0031-9155/58/22/8163
54.
54.D. Craft, “Local beam angle optimization with linear programming and gradient search,” Phys. Med. Biol. 52, N127N135 (2007).
http://dx.doi.org/10.1088/0031-9155/52/7/N02
55.
55.M. Bangert, P. Ziegenhein, and U. Oelfke, “Characterizing the combinatorial beam angle selection problem,” Phys. Med. Biol. 57, 67076723 (2012).
http://dx.doi.org/10.1088/0031-9155/57/20/6707
56.
56.E. Lee, T. Fox, and I. Crocker, “Integer programming applied to intensity-modulated radiation treatment planning,” Ann. Oper. Res., Optim. Med. 119, 165181 (2003).
http://dx.doi.org/10.1023/A:1022938707934
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/42/3/10.1118/1.4908224
Loading
/content/aapm/journal/medphys/42/3/10.1118/1.4908224
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/42/3/10.1118/1.4908224
2015-02-25
2016-09-28

Abstract

Volumetric modulated arc therapy (VMAT) has found widespread clinical application in recent years. A large number of treatment planning studies have evaluated the potential for VMAT for different disease sites based on the currently available commercial implementations of VMAT planning. In contrast, literature on the underlying mathematical optimization methods used in treatment planning is scarce. VMAT planning represents a challenging large scale optimization problem. In contrast to fluence map optimization in intensity-modulated radiotherapy planning for static beams, VMAT planning represents a nonconvex optimization problem. In this paper, the authors review the state-of-the-art in VMAT planning from an algorithmic perspective. Different approaches to VMAT optimization, including arc sequencing methods, extensions of direct aperture optimization, and direct optimization of leaf trajectories are reviewed. Their advantages and limitations are outlined and recommendations for improvements are discussed.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/42/3/1.4908224.html;jsessionid=3othzsZ9-6dCwHmBq6C1JKOg.x-aip-live-06?itemId=/content/aapm/journal/medphys/42/3/10.1118/1.4908224&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/42/3/10.1118/1.4908224&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/42/3/10.1118/1.4908224'
Right1,Right2,Right3,