Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.D. Parkin, J. Ferlay, H. Shin, F. Bray, D. Forman, and C. Mathers, “Estimates of worldwide burden of cancer in 2008,” Int. J. Cancer 127, 28932917 (2010).
2.American Cancer Society, “Cancer Facts and Figures,” (2009).
3.S. Diederich, M. Lentschig, T. Overbeck, D. Wormanns, and W. Heindel, “Detection of pulmonary nodules at spiral CT: Comparison of maximum intensity projection sliding slabs and single-image reporting,” Eur. Radiol. 11, 13451350 (2001).
4.C. A. van Iersel, H. J. de Koning, G. Draisma, W. P. T. M. Mali, E. T. Scholten, K. Nackaerts, M. Prokop, J. D. F. Habbema, M. Oudkerk, and R. J. van Klaveren, “Risk-based selection from the general population in a screening trial: Selection criteria, recruitment and power for the dutch-belgian randomised lung cancer multi-slice CT screening trial (NELSON),” Int. J. Cancer 120, 868874 (2007).
5.A. L. Pegna, G. Picozzi, M. Mascalchi, F. M. Carozzi, L. Carrozzi, C. Comin, C. Spinelli, F. Falaschi, M. Grazzini, F. Innocenti, C. Ronchi, and E. Paci, “Design, recruitment and baseline results of the ITALUNG trial for lung cancer screening with low-dose CT,” Lung Cancer 64, 3440 (2009).
6.National Lung Screening Trial Research Team, D. Aberle, C. Berg, W. Black, T. Church, R. Fagerstrom, B. Galen, I. Gareen, C. Gatsonis, J. Goldin, J. Gohagan, B. Hillman, C. Jaffe, B. Kramer, D. Lynch, P. Marcus, M. Schnall, D. Sullivan, D. Sullivan, and C. Zylak, “The national lung screening trial: Overview and study design,” Radiology 258, 243253 (2011).
7.National Lung Screening Trial Research Team, D. R. Aberle, A. M. Adams, C. D. Berg, W. C. Black, R. M. Fagerstrom, I. F. Gareen, C. Gatsonis, P. M. Marcus, and J. D. Sicks, “Reduced lung-cancer mortality with low-dose computed tomographic screening,” N. Engl. J. Med. 365, 395409 (2011).
8.H. Roberts, D. Patsios, D. Kucharczyk, N. Paul, and T. Roberts, “The utility of computer-aided detection (CAD) for lung cancer screening using low-dose CT,” in International Congress Series, Proceedings of the 19th International Congress and Exhibition (CARS 2005, Berlin, 2005), pp. 11371142.
9.M. Das, G. Mühlenbruch, A. Mahnken, T. Flohr, L. Gündel, S. Stanzel, T. Kraus, R. W. Günthe, and J. Wildberger, “Small pulmonary nodules: Effect of two computer-aided detection systems on radiologist performance,” Radiology 241, 564571 (2006).
10.B. Brochu, C. Beigelman-Aubry, J. Goldmard, P. Raffy, P. Grenier, and O. Lucidarme, “Computer-aided detection of lung nodules on thin collimation MDCT: Impact on radiologistsp´erformance,” J. Radiol. 88, 573578 (2007).
11.S. Matsumoto, Y. Ohno, H. Yamagata, D. Takenaka, and K. Sugimura, “Computer-aided detection of lung nodules on multidetector row computed tomography using three-dimensional analysis of nodule candidates and their surroundings,” Radiat. Med. 26, 562569 (2008).
12.M. S. Brown, J. G. Goldin, S. Rogers, H. J. Kim, R. D. Suh, M. F. McNitt-Gray, S. K. Shah, D. Truong, K. Brown, J. W. Sayre, D. W. Gjertson, P. Batra, and D. R. Aberle, “Computer-aided lung nodule detection in CT: Results of large-scale observer test1,” Acad. Radiol. 12, 681686 (2005).
13.B. Sahiner, H.-P. Chan, L. M. Hadjiiski, P. N. Cascade, E. A. Kazerooni, A. R. Chughtai, C. Poopat, T. Song, L. Frank, J. Stojanovska, and A. Attili, “Effect of CAD on radiologists’ detection of lung nodules on thoracic CT scans: Analysis of an observer performance study by nodule size,” Acad. Radiol. 16, 15181530 (2009).
14.A. Retico, P. Delogu, M. E. Fantacci, I. Gori, and A. P. Martinez, “Lung nodule detection in low-dose and thin-slice computed tomography,” Comput. Biol. Med. 38, 525534 (2008).
15.A. Retico, M. E. Fantacci, I. Gori, P. Kasae, B. Golosio, A. Piccioli, P. Cerello, G. D. Nunzio, and S. Tangaro, “Pleural nodule identification in low-dose and thin-slice lung computed tomography,” Comput. Biol. Med. 39, 11371144 (2009).
16.S. G. Armato III, G. McLennan, L. Bidaut, M. F. McNitt-Gray, C. R. Meyer, A. P. Reeves, B. Zhao, D. R. Aberle, C. I. Henschke, E. A. Hoffman, E. A. Kazerooni, H. MacMahon, E. J. R. van Beek, D. Yankelevitz, A. M. Biancardi, P. H. Bland, M. S. Brown, R. M. Engelmann, G. E. Laderach, D. Max, R. C. Pais, D. P.-Y. Qing, R. Y. Roberts, A. R. Smith, A. Starkey, P. Batra, and P. Caligiuri, “The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans,” Med. Phys. 38, 915931 (2011).
17.B. van Ginneken, S. G. Armato III, B. de Hoop, S. van Amelsvoort-van de Vorst, T. Duindam, M. Niemeijer, K. Murphy, A. Schilham, A. Retico, M. E. Fantacci, N. Camarlinghi, F. Bagagli, I. Gori, T. Hara, H. Fujita, G. Gargano, R. Bellotti, S. Tangaro, L. Bolanos, F. D. Carlo, P. Cerello, S. C. Cheran, E. L. Torres, and M. Prokop, “Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: The ANODE09 study,” Med. Image Anal. 14, 707722 (2010).
18.N. Camarlinghi, I. Gori, A. Retico, R. Bellotti, P. Bosco, P. Cerello, G. Gargano, E. L. Torres, R. Megna, M. Peccarisi, and M. E. Fantacci, “Combination of computer-aided detection algorithms for automatic lung nodule identification,” Int. J. Comput. Assisted Radiol. Surg. 7, 455464 (2012).
19.R. Bellotti, P. Cerello, S. Tangaro, V. Bevilacqua, M. Castellano, G. Mastronardi, F. D. Carlo, S. Bagnasco, U. Bottigli, R. Cataldo, E. Catanzariti, S. C. Cheran, P. Delogu, I. D. Mitri, G. D. Nunzio, M. E. Fantacci, F. Fauci, G. Gargano, B. Golosio, P. L. Indovina, A. Lauria, E. L. Torres, R. Magro, G. L. Masala, R. Massafra, P. Oliva, and A. P. Martinez, “Distributed medical images analysis on a grid infrastructure,” Future Gener. Comput. Syst. 23, 475484 (2007).
20.R. Bellotti, F. D. Carlo, G. Gargano, S. Tangaro, D. Cascio, E. Catanzariti, P. Cerello, S. C. Cheran, P. Delogu, I. D. Mitri, C. Fulcheri, D. Grosso, A. Retico, S. Squarcia, E. Tommasi, and B. Golosio, “A CAD system for nodule detection in low-dose lung CTs based on region growing and a new active contour model,” Med. Phys. 34, 49014910 (2007).
21.A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 16271639 (1964).
22.S. Rajagopalan and R. A. Robb, “Image smoothing with Savtizky-Golay filters,” Proc. SPIE 5029, 773781 (2003).
23.G. D. Nunzio, E. Tommasi, A. Agrusti, R. Cataldo, I. D. Mitri, M. Favetta, S. Maglio, A. Massafra, M. Quarta, M. Torsello, I. Zecca, R. Bellotti, S. Tangaro, P. Calvini, N. Camarlinghi, F. Falaschi, P. Cerello, and P. Oliva, “Automatic lung segmentation in CT images with accurate handling of the hilar region,” J. Digital Imaging 24, 1127 (2011).
24.P. Cerello, S. C. Cheran, S. Bagnasco, R. Bellotti, L. Bolanos, E. Catanzariti, G. D. Nunzio, M. E. Fantacci, E. Fiorina, G. Gargano, G. Gemme, E. L. Torres, G. L. Masala, C. Peroni, and M. Santoro, “3-D object segmentation using ant colonies,” Pattern Recognit. 43, 14761490 (2010).
25.T. Messay, R. C. Hardie, and S. K. Rogers, “A new computationally efficient CAD system for pulmonary nodule detection in CT imagery,” Med. Image Anal. 14, 390406 (2010).
26.S. L. A. Lee, A. Z. Kouzani, and E. J. Hu, “Automated detection of lung nodules in computed tomography images: A review,” Mach. Vision Appl. 23, 151163 (2012).
27.H. S. Pheng, S. M. Shamsuddin, and S. Kenji, “Application of intelligent computational models on computed tomography lung images,” Int. J. Adv. Soft Comput. Appl. 3, 115 (2011).
28.M. Tan, R. Deklerck, B. Jansen, M. Bister, and J. Cornelis, “A novel computer-aided lung nodule detection system for ct images,” Med. Phys. 38, 56305645 (2011).
29.B. Golosio, G. L. Masala, A. Piccioli, P. Oliva, M. Carpinelli, R. Cataldo, P. Cerello, F. De Carlo, F. Falaschi, M. E. Fantacci, G. Gargano, P. Kasae, and M. Torsello, “A novel multithreshold method for nodule detection in lung ct,” Med. Phys. 36, 36073618 (2009).
30.W. Guo and Q. Li, “High performance lung nodule detection schemes in ct using local and global information,” Med. Phys. 39, 51575168 (2012).
31.M. Brown, P. Lo, J. Goldin, E. Barnoy, G. Kim, M. McNitt-Gray, and D. Aberle, “Toward clinically usable cad for lung cancer screening with computed tomography,” Eur. Radiol. 24, 27192728 (2014).
32.K. Murphy, B. van Ginneken, A. M. R. Schilham, B. J. de Hoop, H. A. Gietema, and M. Prokop, “A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification,” Med. Image Anal. 13, 757770 (2009), includes Special Section on the 12th International Conference on Medical Imaging and Computer Assisted Intervention.
33.M. Godoy, P. Cooperberg, Z. Maizlin, R. Yuan, A. McWilliams, S. Lam, and J. Mayo, “Detection sensitivity of a commercial lung nodule cad system in a series of pathologically proven lung cancers,” J. Thorac. Imaging 23, 16 (2008).
34.R2 Technology, Inc., “Understanding the Imagechecker CT Lung System” (PN 13229 Rev A Hologic, Inc., 35 Crosby Drive, Bedford, MA 01730-01401, 2005).
35.ANODE09 challenge organizers (personal communication, 2014).

Data & Media loading...


Article metrics loading...



M5L, a fully automated computer-aided detection (CAD) system for the detection and segmentation of lung nodules in thoracic computed tomography (CT), is presented and validated on several image datasets.

M5L is the combination of two independent subsystems, based on the as a segmentation tool [lung channeler ant model (lungCAM)] and on the voxel-based neural approach. The lungCAM was upgraded with a scan equalization module and a new procedure to recover the nodules connected to other lung structures; its classification module, which makes use of a feed-forward neural network, is based of a small number of features (13), so as to minimize the risk of lacking generalization, which could be possible given the large difference between the size of the training and testing datasets, which contain 94 and 1019 CTs, respectively. The lungCAM (standalone) and M5L (combined) performance was extensively tested on 1043 CT scans from three independent datasets, including a detailed analysis of the full Lung Image Database Consortium/Image Database Resource Initiative database, which is not yet found in literature.

The lungCAM and M5L performance is consistent across the databases, with a sensitivity of about 70% and 80%, respectively, at eight false positive findings per scan, despite the variable annotation criteria and acquisition and reconstruction conditions. A reduced sensitivity is found for subtle nodules and ground glass opacities (GGO) structures. A comparison with other CAD systems is also presented.

The M5L performance on a large and heterogeneous dataset is stable and satisfactory, although the development of a dedicated module for GGOs detection could further improve it, as well as an iterative optimization of the training procedure. The main aim of the present study was accomplished: M5L results do not deteriorate when increasing the dataset size, making it a candidate for supporting radiologists on large scale screenings and clinical programs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd