Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/42/4/10.1118/1.4915120
1.
1.L. E. Antonuk, “Electronic portal imaging devices: A review and historical perspective of contemporary technologies and research,” Phys. Med. Biol. 47, R31R65 (2002).
http://dx.doi.org/10.1088/0031-9155/47/2/401
2.
2.N. Mail, D. Moseley, J. Siewerdsen, and D. Jaffray, “The influence of bowtie filtration on cone-beam CT image quality,” Med. Phys. 36, 2232 (2009).
http://dx.doi.org/10.1118/1.3017470
3.
3.M. Aubin, O. Morin, J. Chen, A. Gillis, B. Pickett, J. Aubry, C. Akazawa, J. Speight, M. Roach III, and J. Pouliot, “The use of megavoltage cone-beam CT to complement CT for target definition in pelvic radiotherapy in the presence of hip replacement,” Br. J. Radiol. 79, 918921 (2006).
http://dx.doi.org/10.1259/bjr/19559792
4.
4.O. Morin, J. Chen, M. Aubin, A. Gillis, J.-F. Aubry, S. Bose, H. Chen, M. Descovich, P. Xia, and J. Pouliot, “Dose calculation using megavoltage cone-beam CT,” Int. J. Radiat. Oncol., Biol., Phys. 67, 12011210 (2007).
http://dx.doi.org/10.1016/j.ijrobp.2006.10.048
5.
5.Y. El-Mohri, K.-W. Jee, L. E. Antonuk, M. Maolinbay, and Q. Zhao, “Determination of the detective quantum efficiency of a prototype, megavoltage indirect detection, active matrix flat-panel imager,” Med. Phys. 28, 25382550 (2001);
http://dx.doi.org/10.1118/1.1413516
5.Erratum: Y. El-Mohri, K.-W. Jee, L. E. Antonuk, M. Maolinbay, and Q. Zhao, Med. Phys. 33, 251 (2006).
http://dx.doi.org/10.1118/1.2135910
6.
6.B. A. Groh, J. H. Siewerdsen, D. G. Drake, J. W. Wong, and D. A. Jaffray, “A performance comparison of flat-panel imager-based MV and kV cone-beam CT,” Med. Phys. 29, 967975 (2002).
http://dx.doi.org/10.1118/1.1477234
7.
7.E. C. Ford, J. Chang, K. Mueller, K. Sidhu, D. Todor, G. Mageras, E. Yorke, C. C. Ling, and H. Amols, “Cone-beam CT with megavoltage beams and an amorphous silicon electronic portal imaging device: Potential for verification of radiotherapy of lung cancer,” Med. Phys. 29, 29132924 (2002).
http://dx.doi.org/10.1118/1.1517614
8.
8.T. R. Mackie, “History of tomotherapy,” Phys. Med. Biol. 51, R427R453 (2006).
http://dx.doi.org/10.1088/0031-9155/51/13/r24
9.
9.H. Keller, M. Glass, R. Hinderer, K. Ruchala, R. Jeraj, G. Olivera, and T. R. Mackie, “Monte Carlo study of a highly efficient gas ionization detector for megavoltage imaging and image-guided radiotherapy,” Med. Phys. 29, 165175 (2002).
http://dx.doi.org/10.1118/1.1445414
10.
10.S. Rathee, D. Tu, T. T. Monajemi, D. W. Rickey, and B. G. Fallone, “A bench-top megavoltage fan-beam CT using CdWO4-photodiode detectors. I. System description and detector characterization,” Med. Phys. 33, 10781089 (2006).
http://dx.doi.org/10.1118/1.2181290
11.
11.S. S. Samant and A. Gopal, “Analysis of the kinestatic charge detection system as a high detective quantum efficiency electronic portal imaging device,” Med. Phys. 33, 35573567 (2006).
http://dx.doi.org/10.1118/1.2241991
12.
12.P. F. Kirvan, T. T. Monajemi, B. G. Fallone, and S. Rathee, “Performance characterization of a MVCT scanner using multislice thick, segmented cadmium tungstate-photodode detectors,” Med. Phys. 37, 249257 (2010).
http://dx.doi.org/10.1118/1.3273032
13.
13.M. A. Mosleh-Shirazi, P. M. Evans, W. Swindell, J. R. N. Symonds-Tayler, S. Webb, and M. Partridge, “Rapid portal imaging with a high-efficiency, large field-of-view detector,” Med. Phys. 25, 23332346 (1998).
http://dx.doi.org/10.1118/1.598443
14.
14.E. J. Seppi, P. Munro, S. W. Johnsen, E. G. Shapiro, C. Tognina, D. Jones, J. M. Pavkovich, C. Webb, I. Mollov, L. D. Partain, and R. E. Colbeth, “Megavoltage cone-beam computed tomography using a high-efficiency image receptor,” Int. J. Radiat. Oncol., Biol., Phys. 55, 793803 (2003).
http://dx.doi.org/10.1016/s0360-3016(02)04155-x
15.
15.A. Sawant, L. E. Antonuk, Y. El-Mohri, Y. Li, Z. Su, Y. Wang, J. Yamamoto, Q. Zhao, H. Du, and J. Daniel, “Segmented phosphors: Mems-based high quantum efficiency detectors for megavoltage x-ray imaging,” Med. Phys. 32, 553565 (2005).
http://dx.doi.org/10.1118/1.1854774
16.
16.E. K. Breitbach, J. S. Maltz, B. Gangadharan, A. Bani-Hashemi, C. M. Anderson, S. K. Bhatia, J. Stiles, D. S. Edwards, and R. T. Flynn, “Image quality improvement in megavoltage cone beam CT using an imaging beam line and a sintered pixelated array system,” Med. Phys. 38, 59695979 (2011).
http://dx.doi.org/10.1118/1.3651470
17.
17.A. Sawant, L. E. Antonuk, Y. El-Mohri, Q. Zhao, Y. Wang, Y. Li, H. Du, and L. Perna, “Segmented crystalline scintillators: Empirical and theoretical investigation of a high quantum efficiency EPID based on an initial engineering prototype CsI(Tl) detector,” Med. Phys. 33, 10531066 (2006).
http://dx.doi.org/10.1118/1.2178452
18.
18.Y. Wang, L. E. Antonuk, Y. El-Mohri, Q. Zhao, A. Sawant, and H. Du, “Monte Carlo investigations of megavoltage cone-beam CT using thick, segmented scintillating detectors for soft tissue visualization,” Med. Phys. 35, 145158 (2008).
http://dx.doi.org/10.1118/1.2818957
19.
19.Y. Wang, L. E. Antonuk, Q. Zhao, Y. El-Mohri, and L. Perna, “High-DQE EPIDs based on thick, segmented BGO and CsI: Tl scintillators: Performance evaluation at extremely low dose,” Med. Phys. 36, 57075718 (2009).
http://dx.doi.org/10.1118/1.3259721
20.
20.Y. Wang, L. E. Antonuk, Y. El-Mohri, and Q. Zhao, “A Monte Carlo investigation of Swank noise for thick, segmented, crystalline scintillators for radiotherapy imaging,” Med. Phys. 36, 32273238 (2009).
http://dx.doi.org/10.1118/1.3125821
21.
21.Y. El-Mohri, L. E. Antonuk, Q. Zhao, R. B. Choroszucha, H. Jiang, and L. Liu, “Low-dose megavoltage cone-beam CT imaging using thick, segmented scintillators,” Phys. Med. Biol. 56, 15091527 (2011).
http://dx.doi.org/10.1088/0031-9155/56/6/001
22.
22.L. Liu, L. E. Antonuk, Q. Zhao, Y. El-Mohri, and H. Jiang, “Countering beam divergence effects with focused segmented scintillators for high DQE megavoltage active matrix imagers,” Phys. Med. Biol. 57, 53435358 (2012).
http://dx.doi.org/10.1088/0031-9155/57/16/5343
23.
23.Y. El-Mohri, L. E. Antonuk, R. B. Choroszucha, Q. Zhao, H. Jiang, and L. Liu, “Optimization of the performance of segmented scintillators for radiotherapy imaging through novel binning techniques,” Phys. Med. Biol. 59, 797818 (2014).
http://dx.doi.org/10.1088/0031-9155/59/4/797
24.
24.L. Liu, L. E. Antonuk, Y. El-Mohri, Q. Zhao, and H. Jiang, “Optimization of the design of thick, segmented scintillators for megavoltage cone-beam CT using a novel, hybrid modeling technique,” Med. Phys. 41, 061916 (14pp.) (2014).
http://dx.doi.org/10.1118/1.4875724
25.
25.M. Weissbluth, C. Karzmark, R. Steele, and A. Selby, “The Stanford medical linear accelerator: II. Installation and physical measurements 1,” Radiology 72, 242265 (1959).
http://dx.doi.org/10.1148/72.2.242
26.
26.H. Johns and J. Cunningham, “A precision cobalt 60 unit for fixed field and rotation therapy,” Am. J. Roentgenol., Radium Ther. Nucl. Med. 81, 412 (1959).
27.
27.Y. Cho and P. Munro, “Kilovision: Thermal modeling of a kilovoltage x-ray source integrated into a medical linear accelerator,” Med. Phys. 29, 21012108 (2002).
http://dx.doi.org/10.1118/1.1501142
28.
28.D. M. Galbraith, “Low-energy imaging with high-energy bremsstrahlung beams,” Med. Phys. 16, 734746 (1989).
http://dx.doi.org/10.1118/1.596332
29.
29.B. A. Faddegon, V. Wu, J. Pouliot, B. Gangadharan, and A. Bani-Hashemi, “Low dose megavoltage cone beam computed tomography with an unflattened 4 MV beam from a carbon target,” Med. Phys. 35, 57775786 (2008).
http://dx.doi.org/10.1118/1.3013571
30.
30.J. L. Robar, T. Connell, W. Huang, and R. G. Kelly, “Megavoltage planar and cone-beam imaging with low-Z targets: Dependence of image quality improvement on beam energy and patient separation,” Med. Phys. 36, 39553963 (2009).
http://dx.doi.org/10.1118/1.3183499
31.
31.D. Roberts, V. Hansen, M. Thompson, G. Poludniowski, A. Niven, J. Seco, and P. Evans, “Kilovoltage energy imaging with a radiotherapy linac with a continuously variable energy range,” Med. Phys. 39, 12181226 (2012).
http://dx.doi.org/10.1118/1.3681011
32.
32.D. Parsons, J. L. Robar, and D. Sawkey, “A Monte Carlo investigation of low-Z target image quality generated in a linear accelerator using varian’s virtualinac,” Med. Phys. 41, 021719 (6pp.) (2014).
http://dx.doi.org/10.1118/1.4861818
33.
33.J. Rottmann, M. Aristophanous, A. Chen, L. Court, and R. Berbeco, “A multi-region algorithm for markerless beam’s-eye view lung tumor tracking,” Phys. Med. Biol. 55, 55855598 (2010).
http://dx.doi.org/10.1088/0031-9155/55/18/021
34.
34.F.-F. Yin, H. Guan, and W. Lu, “A technique for on-board CT reconstruction using both kilovoltage and megavoltage beam projections for 3D treatment verification,” Med. Phys. 32, 28192826 (2005).
http://dx.doi.org/10.1118/1.1997307
35.
35.T. Falco and B. G. Fallone, “Characteristics of metal-plate/film detectors at therapy energies. I. Modulation transfer function,” Med. Phys. 25, 24552462 (1998).
http://dx.doi.org/10.1118/1.598436
36.
36.C. Kausch, B. Schreiber, F. Kreuder, R. Schmidt, and O. Dössel, “Monte Carlo simulations of the imaging performance of metal plate/phosphor screens used in radiotherapy,” Med. Phys. 26, 21132124 (1999).
http://dx.doi.org/10.1118/1.598727
37.
37.J. Yorkston, L. E. Antonuk, Y. El-Mohri, K.-W. Jee, W. Huang, M. Maolinbay, X. Rong, J. H. Siewerdsen, and D. P. Trauernicht, “Improved spatial resolution in flat-panel imaging systems,” Proc. SPIE 3336, 556563 (1998).
http://dx.doi.org/10.1117/12.317058
38.
38.Y. El-Mohri, L. E. Antonuk, Q. Zhao, Y. Wang, Y. Li, H. Du, and A. Sawant, “Performance of a high fill factor, indirect detection prototype flat-panel imager for mammography,” Med. Phys. 34, 315327 (2007).
http://dx.doi.org/10.1118/1.2403967
39.
39.F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry (Wiley-VCH Verlag GmbH & Co., Weinheim, 2004).
40.
40.K. Sato, F. Nariyuki, H. Nomura, A. Takasu, S. Fukui, M. Nakatsu, Y. Okada, T. Nabeta, and Y. Hosoi, “Effect of x-ray incident direction and scintillator layer design on image quality of indirect-conversion flat-panel detector with GOS phosphor,” Proc. SPIE 7961, 79614I (2011).
http://dx.doi.org/10.1117/12.877752
41.
41.S. Rivetti, N. Lanconelli, M. Bertolini, A. Nitrosi, and A. Burani, “Characterization of a clinical unit for digital radiography based on irradiation side sampling technology,” Med. Phys. 40, 101902 (11pp.) (2013).
http://dx.doi.org/10.1118/1.4820364
42.
42.I. Kawrakow and D. W. O. Rogers, “The EGSnrc code system: Monte carlo simulation of electron and photon transport,” Technical Report No. PIRS–701 (National Research Council of Canada, Ottawa, Canada, 2000).
43.
43.I. Kawrakow, “egspp: The EGSnrc c++ class library,” Technical Report No. PIRS-899 (National Research Council of Canada, Ottawa, Canada, 2005).
44.
44.J. M. Boone and J. A. Seibert, “An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV,” Med. Phys. 24, 16611670 (1997).
http://dx.doi.org/10.1118/1.597953
45.
45.D. Sheikh-Bagheri, Ph.D. thesis,Carleton University, Ottawa, 1999.
46.
46.S. Agostinelli et al., “ geant4–A simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250303 (2003).
http://dx.doi.org/10.1016/s0168-9002(03)01368-8
47.
47.M. Maolinbay, Y. El-Mohri, L. Antonuk, K.-W. Jee, S. Nassif, X. Rong, and Q. Zhao, “Additive noise properties of active matrix flat-panel imagers,” Med. Phys. 27, 18411854 (2000).
http://dx.doi.org/10.1118/1.1286721
48.
48.P. A. Tipler and G. Mosca, Physics for Scientists and Engineers, 6 ed. (Freeman, W. H. & Company, New York, NY, 2007).
49.
49.L. E. Antonuk, Q. Zhao, Y. El-Mohri, H. Du, Y. Wang, R. A. Street, J. Ho, R. Weisfield, and W. Yao, “An investigation of signal performance enhancements achieved through innovative pixel design across several generations of indirect detection, active matrix, flat-panel arrays,” Med. Phys. 36, 33223339 (2009).
http://dx.doi.org/10.1118/1.3049602
50.
50.M. Maolinbay, T. Zimmerman, R. Yarema, L. Antonuk, Y. El-Mohri, and M. Yeakey, “Design and performance of a low noise, 128-channel ASIC preamplifier for readout of active matrix flat-panel imaging arrays,” Nucl. Instrum. Methods Phys. Res., Sect. A 485, 661675 (2002).
http://dx.doi.org/10.1016/s0168-9002(01)02129-5
51.
51.M. F. Fast, T. Koenig, U. Oelfke, and S. Nill, “Performance characteristics of a novel megavoltage cone-beam-computed tomography device,” Phys. Med. Biol. 57, N15N24 (2012).
http://dx.doi.org/10.1088/0031-9155/57/3/n15
52.
52.H. Fujita, D. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, “A simple method for determining the modulation transfer function in digital radiography,” IEEE Trans. Med. Imaging 11, 3439 (1992).
http://dx.doi.org/10.1109/42.126908
53.
53.R. K. Swank, “Absorption and noise in x-ray phosphors,” J. Appl. Phys. 44, 41994203 (1973).
http://dx.doi.org/10.1063/1.1662918
54.
54.W. Zhao, G. Ristic, and J. A. Rowlands, “X-ray imaging performance of structured cesium iodide scintillators,” Med. Phys. 31, 25942605 (2004).
http://dx.doi.org/10.1118/1.1782676
55.
55.E. Samei, “Image quality in two phosphor-based flat panel digital radiographic detectors,” Med. Phys. 30, 17471757 (2003).
http://dx.doi.org/10.1118/1.1578772
56.
56.Y. Wang, Y. El-Mohri, L. E. Antonuk, and Q. Zhao, “Monte Carlo investigations of the effect of beam divergence on thick, segmented crystalline scintillators for radiotherapy imaging,” Phys. Med. Biol. 55, 36593673 (2010).
http://dx.doi.org/10.1088/0031-9155/55/13/006
57.
57.R. A. Street, W. S. Wong, and R. Lujan, “Curved electronic pixel arrays using a cut and bend approach,” J. Appl. Phys. 105, 104504 (2009).
http://dx.doi.org/10.1063/1.3129315
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/42/4/10.1118/1.4915120
Loading
/content/aapm/journal/medphys/42/4/10.1118/1.4915120
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/42/4/10.1118/1.4915120
2015-03-31
2016-09-29

Abstract

In modern radiotherapy treatment rooms, megavoltage (MV) portal imaging and kilovoltage (kV) cone-beam CT (CBCT) imaging are performed using various active matrix flat-panel imager (AMFPI) designs. To expand the clinical utility of MV and kV imaging, MV AMFPIs incorporating thick, segmented scintillators and, separately, kV imaging using a beam’s eye view geometry have been investigated by a number of groups. Motivated by these previous studies, it is of interest to explore to what extent it is possible to preserve the benefits of kV and MV imaging using a single AMFPI design, given the considerably different x ray energy spectra used for kV and MV imaging. In this paper, considerations for the design of such a dual energy imager are explored through examination of the performance of a variety of hypothetical AMFPIs based on x ray converters employing segmented scintillators.

Contrast, noise, and contrast-to-noise ratio performances were characterized through simulation modeling of CBCT imaging, while modulation transfer function, Swank factor, and signal performance were characterized through simulation modeling of planar imaging. The simulations were based on a previously reported hybrid modeling technique (accounting for both radiation and optical effects), augmented through modeling of electronic additive noise. All designs employed BGO scintillator material with thicknesses ranging from 0.25 to 4 cm and element-to-element pitches ranging from 0.508 to 1.016 mm. A series of studies were performed under both kV and MV imaging conditions to determine the most advantageous imager configuration (involving front or rear x ray illumination and use of a mirror or black reflector), converter design (pitch and thickness), and operating mode (pitch-binning combination).

Under the assumptions of the present study, the most advantageous imager design was found to employ rear illumination of the converter in combination with a black reflector, incorporate a BGO converter with a 0.508 mm pitch and a 2 cm thickness, and operate at full resolution for kV imaging and 2 × 2 binning mode for MV imaging. Such a dual energy imager design should provide soft tissue visualization at low, clinically practical doses under MV conditions, while helping to preserve the high spatial resolution and high contrast offered by kV imaging.

The authors’ theoretical investigation suggests that a dual energy imager capable of largely preserving the desirable characteristics of both kV and MV imaging is feasible. Such an imager, when coupled to a dual energy radiation source, could facilitate simplification of current treatment room imaging systems (as well as their associated quality assurance), and facilitate more precise integration of kV and MV imaging information by virtue of reduced geometric uncertainties.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/42/4/1.4915120.html;jsessionid=xSG7oNenKxqvkm74dlNb47Nn.x-aip-live-06?itemId=/content/aapm/journal/medphys/42/4/10.1118/1.4915120&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/42/4/10.1118/1.4915120&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/42/4/10.1118/1.4915120'
Right1,Right2,Right3,