Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/42/5/10.1118/1.4915284
1.
1.National Cancer Institute, Non-Small Cell Lung Cancer Treatment, 2015, available at http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional.
2.
2.National Cancer Institute, Surveilance, Epidermiology and End Results, 2013.
3.
3.M. Machtay, K. Bae, B. Movsas, R. Paulus, E. M. Gore, R. Komaki, K. Albain, W. T. Sause, and W. J. Curran, “Higher biologically effective dose of radiotherapy is associated with improved outcomes for locally advanced non-small cell lung carcinoma treated with chemoradiation: An analysis of the radiation therapy oncology group,” Int. J. Radiat. Oncol., Biol., Phys. 82(1), 425434 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2010.09.004
4.
4.P. Lambin, R. G. P. M. van Stiphout, M. H. W. Starmans, E. Rios-Velazquez, G. Nalbantov, H. J. W. L. Aerts, E. Roelofs, W. van Elmpt, P. C. Boutros, P. Granone, V. Valentini, A. C. Begg, D. De Ruysscher, and A. Dekker, “Predicting outcomes in radiation oncology—Multifactorial decision support systems,” Nat. Rev. Clin. Oncol. 10(1), 2740 (2013).
http://dx.doi.org/10.1038/nrclinonc.2012.196
5.
5.L. B. Marks, S. M. Bentzen, J. O. Deasy, F.-M. S. Kong, J. D. Bradley, I. S. Vogelius, I. E. Naqa, J. L. Hubbs, J. V. Lebesque, R. D. Timmerman, M. K. Martel, and A. Jackson, “Radiation dose-volume effects in the lung,” Int. J. Radiat. Oncol., Biol., Phys. 76(Suppl. 3), S70S76 (2010), Quantitative analyses of normal tissue effects in the clinic.
http://dx.doi.org/10.1016/j.ijrobp.2009.06.091
6.
6.I. Turesson, J. Nyman, E. Holmberg, and A. Odn, “Prognostic factors for acute and late skin reactions in radiotheraphy patients,” Int. J. Radiat. Oncol., Biol., Phys. 36(5), 10651075 (1996).
http://dx.doi.org/10.1016/S0360-3016(96)00426-9
7.
7.K. Fleckenstein, B. Gauter-Fleckenstein, I. L. Jackson, Z. Rabbani, M. Anscher, and Z. Vujaskovic, “Using biological markers to predict risk of radiation injury,” Semin. Radiat. Oncol. 17(2), 8998 (2007), Late normal tissue injury.
http://dx.doi.org/10.1016/j.semradonc.2006.11.004
8.
8.M. S. Anscher, L. B. Marks, T. D. Shafman, R. Clough, H. Huang, A. Tisch, M. Munley, J. E. Herndon, J. Garst, J. Crawford, and R. L. Jirtle, “Using plasma transforming growth factor beta-1 during radiotherapy to select patients for dose escalation,” J. Clin. Oncol. 19(17), 37583765 (2001).
http://dx.doi.org/10.1016/S0360-3016(01)02254-4
9.
9.L. Zhao, K. Sheldon, M. Chen, M. S. Yin, J. A. Hayman, G. P. Kalemkerian, D. Arenberg, S. E. Lyons, J. L. Curtis, M. Davis, K. B. Cease, D. Brenner, M. S. Anscher, T. S. Lawrence, and F. M. Kong, “The predictive role of plasma tgf-1 during radiation therapy for radiation-induced lung toxicity deserves further study in patients with non-small cell lung cancer,” Lung Cancer 59(2), 232239 (2008).
http://dx.doi.org/10.1016/j.lungcan.2007.08.010
10.
10.Y. Chen, P. Rubin, J. Williams, E. Hernady, T. Smudzin, and P. Okunieff, “Circulating il-6 as a predictor of radiation pneumonitis,” Int. J. Radiat. Oncol., Biol., Phys. 49(3), 641648 (2001).
http://dx.doi.org/10.1016/S0360-3016(00)01445-0
11.
11.J. H. Oh, J. M. Craft, R. Townsend, J. O. Deasy, J. D. Bradley, and I. El Naqa, “A bioinformatics approach for biomarker identification in radiation-induced lung inflammation from limited proteomics data,” J. Proteome Res. 10(3), 14061415 (2011).
http://dx.doi.org/10.1021/pr101226q
12.
12.L. Zhao, L. Wang, W. Ji, X. Wang, X. Zhu, Q. Feng, W. Yang, and W. Yin, “Association between plasma angiotensin-converting enzyme level and radiation pneumonitis,” Cytokine 37(1), 7175 (2007).
http://dx.doi.org/10.1016/j.cyto.2007.02.019
13.
13.S. N. Ghosh, R. Zhang, B. L. Fish, V. A. Semenenko, X. A. Li, J. E. Moulder, E. R. Jacobs, and M. Medhora, “Renin-angiotensin system suppression mitigates experimental radiation pneumonitis,” Int. J. Radiat. Oncol., Biol., Phys. 75(5), 15281536 (2009).
http://dx.doi.org/10.1016/j.ijrobp.2009.07.1743
14.
14.I. E. Naqa, J. Bradley, A. I. Blanco, P. E. Lindsay, M. Vicic, A. Hope, and J. O. Deasy, “Multivariable modeling of radiotherapy outcomes, including dose-volume and clinical factors,” Int. J. Radiat. Oncol., Biol., Phys. 64(4), 12751286 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2005.11.022
15.
15.S. J. Spencer, D. A. Bonnin, J. O. Deasy, J. D. Bradley, and I. El Naqa, “Bioinformatics methods for learning radiation-induced lung inflammation from heterogeneous retrospective and prospective data,” J. Biomed. Biotechnol. 2009, 114.
http://dx.doi.org/10.1155/2009/892863
16.
16.I. E. Naqa, P. Pater, and J. Seuntjens, “Monte carlo role in radiobiological modeling of radiotherapy outcomes,” Phys. Med. Biol. 57(11), R75R97 (2012).
http://dx.doi.org/10.1088/0031-9155/57/11/R75
17.
17.D. M. Chickering, D. Heckerman, and C. Meek, “Large-sample learning of bayesian networks is np-hard,” J. Mach. Learn. Res. 5, 12871330 (2004).
18.
18.N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,” Mach. Learn. 29, 131163 (1997).
http://dx.doi.org/10.1023/A:1007465528199
19.
19.J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky, “Bayesian model averaging: A tutorial,” Stat. Sci. 14(11), 382417 (1999).
http://dx.doi.org/10.1214/ss/1009212519
20.
20.D. Madigan, J. York, and D. Allard, “Bayesian Graphical Models for Discrete Data,” Int. Stat. Rev. 63(2), 215232 (1995).
http://dx.doi.org/10.2307/1403615
21.
21.S. K. Das, S. Chen, J. O. Deasy, S. Zhou, F.-F. Yin, and L. B. Marks, “Combining multiple models to generate consensus: Application to radiation-induced pneumonitis prediction,” Med. Phys. 35(11), 50986109 (2008).
http://dx.doi.org/10.1118/1.2996012
22.
22.W. P. Smith, J. Doctor, J. Meyer, I. J. Kalet, and M. H. Phillips, “A decision aid for intensity-modulated radiation-therapy plan selection in prostate cancer based on a prognostic bayesian network and a Markov model,” Artif. Intell. Med. 46(2), 119130 (2009).
http://dx.doi.org/10.1016/j.artmed.2008.12.002
23.
23.K. Jayasurya, G. Fung, S. Yu, C. Dehing-Oberije, D. De Ruysscher, A. Hope, W. De Neve, Y. Lievens, P. Lambin, and A. L. Dekker, “Comparison of bayesian network and support vector machine models for two-year survival prediction in lung cancer patients treated with radiotherapy,” Med. Phys. 37(4), 14011407 (2010).
http://dx.doi.org/10.1118/1.3352709
24.
24.J. H. Oh, J. Craft, R. A. Lozi, M. Vaidya, Y. Meng, J. O. Deasy, J. D. Bradley, and I. E. Naqa, “A bayesian network approach for modeling local failure in lung cancer,” Phys. Med. Biol. 56(6), 16351651 (2011).
http://dx.doi.org/10.1088/0031-9155/56/6/008
25.
25.A. J. Hope, P. E. Lindsay, I. E. Naqa, J. R. Alaly, M. Vicic, J. D. Bradley, and J. O. Deasy, “Modeling radiation pneumonitis risk with clinical, dosimetric, and spatial parameters,” Int. J. Radiat. Oncol., Biol., Phys. 65(1), 112124 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2005.11.046
26.
26.D. Koller and M. Sahami, “Toward optimal feature selection” (Stanford InfoLab, Technical Report SIDL-WP-1996-0032,1996).
27.
27.K. P. Murphy, “The bayes net toolbox for matlab,” Comput. Sci. Stat. 33, 10241034 (2001).
28.
28.N. Friedman, M. Goldszmidt, and A. Wyner, “Data analysis with bayesian networks: A bootstrap approach,” in Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, UAI’99, San Francisco, CA (Morgan Kaufmann Publishers, Inc., 1999), pp. 196205.
29.
29.D. Heckerman, C. Meek, and G. Cooper, “A bayesian approach to causal discovery” (Microsoft Research, Technical Report MSR-TR-97-05,1997).
30.
30.B. Efron and R. Tibshirani, “Improvements on cross-validation: The .632+ bootstrap method,” J. Am. Stat. Assoc. 92(438), 548560 (1997).
http://dx.doi.org/10.2307/2965703
31.
31.M. Scutari, “On the prior and posterior distributions used in graphical modeling,” Bayesian Analysis 8(3), 505532 (2013).
http://dx.doi.org/10.1214/13-BA819
32.
32.G. J. Kutcher and C. Burman, “Calculation of complication probability factors for non-uniform normal tissue irradiation: The effective volume method gerald,” Int. J. Radiat. Oncol., Biol., Phys. 16(6), 16231630 (1989).
http://dx.doi.org/10.1016/0360-3016(89)90972-3
33.
33.A. Niemierko, “Reporting and analyzing dose distributions: A concept of equivalent uniform dose,” Med. Phys. 24(1), 103110 (1997).
http://dx.doi.org/10.1118/1.598063
34.
34.J. D. Bradley, A. Hope, I. El Naqa, A. Apte, P. E. Lindsay, W. Bosch, J. Matthews, W. Sause, M. V. Graham, and J. O. Deasy, “A nomogram to predict radiation pneumonitis, derived from a combined analysis of rtog 9311 and institutional data,” Int. J. Radiat. Oncol., Biol., Phys. 69(4), 985992 (2007).
http://dx.doi.org/10.1016/j.ijrobp.2007.04.077
35.
35.N. Friedman and D. Koller, “Being bayesian about network structure—Bayesian approach to structure discovery in bayesian networks,” Mach. Learn. 50, 95125 (2003).
http://dx.doi.org/10.1023/a:1020249912095
36.
36.D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques—Adaptive Computation and Machine Learning (The MIT press, MA, 1999).
37.
37.B. Sahiner, H. Chan, and L. Hadjiiski, “Classifier performance prediction for computer-aided diagnosis using a limited dataset,” Med. Phys. 35(4), 15591570 (2008).
http://dx.doi.org/10.1118/1.2868757
38.
38.A. Ng and M. Jordan, “On Discriminative vs Generative classifiers: A comparison of logistic regression and naive Bayes,” in Advances in Neural Information Processing Systems (NIPS) (The MIT Press, 2001), Vol. 14.
39.
39.A. Gelman, G. Roberts, and W. Gilks, “Efficient Metropolis jumping rules,” Bayesian Statistics 5: Proceedings of the Fifth Valencia International Meeting (1996), pp. 599607.
40.
40.G. Gan, C. Ma, and J. Wu, Data Clustering: Theory, Algorithms, and Application (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2007).
41.
41.B. Parashar, A. Edwards, R. Mehta, M. Pasmantier, A. G. Wernicke, A. Sabbas, R. S. Kerestez, D. Nori, and KS. Chao, “Chemotherapy significantly increases the risk of radiation pneumonitis in radiation therapy of advanced lung cancer,” Am. J. Clin. Oncol. 34, 160164 (2011).
http://dx.doi.org/10.1097/COC.0b013e3181d6b40f
42.
42.S. L. Kwa, J. V. Lebesque, J. C. Theuws, L. B. Marks, M. T. Munley, G. Bentel, D. Oetzel, U. Spahn, M. V. Graham, R. E. Drzymala, J. A. Purdy, A. S. Lichter, M. K. Martel, and R. K. Ten Haken, “Radiation pneumonitis as a function of mean lung dose: An analysis of pooled data of 540 patients,” Int. J. Radiat. Oncol., Biol., Phys. 42(1), 19 (1998).
http://dx.doi.org/10.1016/S0360-3016(98)00196-5
43.
43.F. M. Kong, J. A. Hayman, K. A. Griffith, G. P. Kalemkerian, D. Arenberg, S. Lyons, A. Turrisi, A. Lichter, B. Fraass, A. Eisbruch, T. S. Lawrence, and R. K. Ten Haken, “Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): Predictors for radiation pneumonitis and fibrosis,” Int. J. Radiat. Oncol., Biol., Phys. 65(4), 10751086 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2006.01.051
44.
44.E. X. Huang, A. J. Hope, P. E. Lindsay, M. Trovo, I. El Naqa, J. O. Deasy, and J. D. Bradley, “Heart irradiation as a risk factor for radiation pneumonitis,” Acta Oncol. 50(1), 5160 (2011).
http://dx.doi.org/10.3109/0284186X.2010.521192
45.
45.See supplementary material at http://dx.doi.org/10.1118/1.4915284 for materials on the machine learning concepts pertaining to the presented methodology.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/42/5/10.1118/1.4915284
Loading
/content/aapm/journal/medphys/42/5/10.1118/1.4915284
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/42/5/10.1118/1.4915284
2015-04-17
2016-09-29

Abstract

Prediction of radiation pneumonitis (RP) has been shown to be challenging due to the involvement of a variety of factors including dose–volume metrics and radiosensitivity biomarkers. Some of these factors are highly correlated and might affect prediction results when combined. Bayesian network (BN) provides a probabilistic framework to represent variable dependencies in a directed acyclic graph. The aim of this study is to integrate the BN framework and a systems’ biology approach to detect possible interactions among RP risk factors and exploit these relationships to enhance both the understanding and prediction of RP.

The authors studied 54 nonsmall-cell lung cancer patients who received curative 3D-conformal radiotherapy. Nineteen RP events were observed (common toxicity criteria for adverse events grade 2 or higher). Serum concentration of the following four candidate biomarkers were measured at baseline and midtreatment: alpha-2-macroglobulin, angiotensin converting enzyme (ACE), transforming growth factor, interleukin-6. Dose-volumetric and clinical parameters were also included as covariates. Feature selection was performed using a Markov blanket approach based on the Koller–Sahami filter. The Markov chain Monte Carlo technique estimated the posterior distribution of BN graphs built from the observed data of the selected variables and causality constraints. RP probability was estimated using a limited number of high posterior graphs (ensemble) and was averaged for the final RP estimate using Bayes’ rule. A resampling method based on bootstrapping was applied to model training and validation in order to control under- and overfit pitfalls.

RP prediction power of the BN ensemble approach reached its optimum at a size of 200. The optimized performance of the BN model recorded an area under the receiver operating characteristic curve (AUC) of 0.83, which was significantly higher than multivariate logistic regression (0.77), mean heart dose (0.69), and a pre-to-midtreatment change in ACE (0.66). When RP prediction was made only with pretreatment information, the AUC ranged from 0.76 to 0.81 depending on the ensemble size. Bootstrap validation of graph features in the ensemble quantified confidence of association between variables in the graphs where ten interactions were statistically significant.

The presented BN methodology provides the flexibility to model hierarchical interactions between RP covariates, which is applied to probabilistic inference on RP. The authors’ preliminary results demonstrate that such framework combined with an ensemble method can possibly improve prediction of RP under real-life clinical circumstances such as missing data or treatment plan adaptation.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/42/5/1.4915284.html;jsessionid=XydMxHy9T5ogfyNKT66a2ZTR.x-aip-live-03?itemId=/content/aapm/journal/medphys/42/5/10.1118/1.4915284&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/42/5/10.1118/1.4915284&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/42/5/10.1118/1.4915284'
Right1,Right2,Right3,