Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/42/5/10.1118/1.4921066
1.
1.R. Fazel, H. M. Krumholz, Y. Wang, J. S. Ross, J. Chen, H. H. Ting, N. D. Shah, K. Nasir, A. J. Einstein, and B. K. Nallamothu, “Exposure to low-dose ionizing radiation from medical imaging procedures,” N. Engl. J. Med. 361, 849857 (2009).
http://dx.doi.org/10.1056/NEJMoa0901249
2.
2.J. Sperl, D. Beque, B. Claus, B. De Man, B. Senzig, and M. Brokate, “Computer-assisted scan protocol and reconstruction (CASPAR)-reduction of image noise and patient dose,” IEEE Trans. Med. Imaging 29(3), 724732 (2010).
http://dx.doi.org/10.1109/TMI.2009.2034515
3.
3.T. P. Szczykutowicz and C. A. Mistretta, “Experimental realization of fluence field modulated CT using digital beam attenuation,” Phys. Med. Biol. 59, 13051326 (2014).
http://dx.doi.org/10.1088/0031-9155/59/5/1305
4.
4.S. Bartolac, S. Graham, J. Siewerdsen, and D. Jaffray, “Fluence field optimization for noise and dose objectives in CT,” Med. Phys. 38, S2S17 (2011).
http://dx.doi.org/10.1118/1.3574885
5.
5.H. H. Knox and R. M. Gagne, “Alternative methods of obtaining the computed tomography dose index,” Health Phys. 71(2), 219224 (1996).
http://dx.doi.org/10.1097/00004032-199608000-00015
6.
6.J. M. Boone, K. J. Strauss, D. D. Cody, C. H. McCollough, M. F. McNitt-Gray, T. L. Toth, M. J. Goske, and D. P. Frush, “Size-specific dose estimates (SSDE) in pediatric and adult body CT examinations,” AAPM Report No. 204, 2011.
7.
7.K. Matsubara, M. Sugai, A. Toyoda, H. Koshida, K. Sakuta, T. Takata, K. Koshida, H. Iida, and O. Matsui, “Assessment of an organ-based tube current modulation in thoracic computed tomography,” J. Appl. Clin. Med. Phys. 13(2), 148158 (2012).
8.
8.J. Wang, X. Duan, J. A. Christner, S. Leng, L. Yu, and C. H. McCollough, “Radiation dose reduction to the breast in thoracic CT: Comparison of bismuth shielding, organ-based tube current modulation, and use of a globally decreased tube current,” Med. Phys. 38, 60846092 (2011).
http://dx.doi.org/10.1118/1.3651489
9.
9.X. Tian, X. Li, W. P. Segars, D. Frush, and E. Samei, “Prospective optimization of CT under tube current modulation: I. Organ dose,” Proc. SPIE 9033, 90331Q (2014).
http://dx.doi.org/10.1117/12.2043858
10.
10.A. Ding, J. Gu, A. V. Trofimov, and X. G. Xu, “Monte Carlo calculation of imaging doses from diagnostic multidetector CT and kilovoltage cone-beam CT as part of prostate cancer treatment plans,” Med. Phys. 37, 61996204 (2010).
http://dx.doi.org/10.1118/1.3512791
11.
11.W. Chen, D. Kolditz, M. Beister, R. Bohle, and W. A. Kalender, “Fast on-site Monte Carlo tool for dose calculations in CT applications,” Med. Phys. 39, 29852996 (2012).
http://dx.doi.org/10.1118/1.4711748
12.
12.T. R. Mackie, “A convolution method of calculating dose for 15-MV x rays,” Med. Phys. 12(2), 188196 (1985).
http://dx.doi.org/10.1118/1.595774
13.
13.A. Ahnesjö and M. M. Aspradakis, “Dose calculations for external photon beams in radiotherapy,” Phys. Med. Biol. 44, R99R155 (1999).
http://dx.doi.org/10.1088/0031-9155/44/11/201
14.
14.W. Ulmer, J. Pyyry, and W. Kaissl, “A 3D photon superposition/convolution algorithm and its foundation on results of Monte Carlo calculations,” Phys. Med. Biol. 50(8), 17671790 (2005).
http://dx.doi.org/10.1088/0031-9155/50/8/010
15.
15.R. Jacques, J. Wong, R. Taylor, and T. McNutt, “Real-time dose computation: GPU-accelerated source modeling and superposition/convolution,” Med. Phys. 38(1), 294305 (2011).
http://dx.doi.org/10.1118/1.3483785
16.
16.T. Krieger and O. A. Sauer, “Monte Carlo–versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom,” Phys. Med. Biol. 50(5), 859868 (2005).
http://dx.doi.org/10.1088/0031-9155/50/5/010
17.
17.I. Fotina, P. Winkler, T. Künzler, J. Reiterer, I. Simmat, and D. Georg, “Advanced kernel methods vs. Monte Carlo-based dose calculation for high energy photon beams,” Radiother. Oncol. 93(3), 645653 (2009).
http://dx.doi.org/10.1016/j.radonc.2009.10.013
18.
18.S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M. G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. S. Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. P. Wellisch, T. Wenaus, D. C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche, “Geant4—A simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506(3), 250303 (2003).
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
19.
19.X. Tian, Z. Yin, B. De Man, and E. Samei, “Projection-based dose metric: Accuracy testing and applications for CT design,” Proc. SPIE 8668, 866829 (2013).
http://dx.doi.org/10.1117/12.2008051
20.
20.R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional CT array,” Med. Phys. 12(2), 252255 (1985).
http://dx.doi.org/10.1118/1.595715
21.
21.P. M. Joseph, “An improved algorithm for reprojecting rays through pixel images,” IEEE Trans. Med. Imaging 1, 192196 (1982).
http://dx.doi.org/10.1109/TMI.1982.4307572
22.
22.B. De Man and S. Basu, “Distance-driven projection and backprojection in three dimensions,” Phys. Med. Biol. 49(11), 24632475 (2004).
http://dx.doi.org/10.1088/0031-9155/49/11/024
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/42/5/10.1118/1.4921066
Loading
/content/aapm/journal/medphys/42/5/10.1118/1.4921066
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/42/5/10.1118/1.4921066
2015-05-14
2016-09-27

Abstract

Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x-ray detectors, and optimized CT acquisition schemes with precise control over the x-ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real-time patient-specific protocol optimization.

The authors present a new method for volumetrically absorbed dose on a per-voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance-driven pencil-beam approach to model the first-order x-ray interactions with a set of Gaussian convolution kernels to model the higher-order x-ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth.

The authors’ results indicate that the proposed approach offers a good trade-off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low-resolution filtered-backprojection algorithm.

The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x-ray photons, but the authors expect that it may prove useful in applications where real-time patient-specific dose estimation is required.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/42/5/1.4921066.html;jsessionid=UJDYx9474WVaoAjC7luH4CvW.x-aip-live-03?itemId=/content/aapm/journal/medphys/42/5/10.1118/1.4921066&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/42/5/10.1118/1.4921066&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/42/5/10.1118/1.4921066'
Right1,Right2,Right3,