Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. GLOBOCAN Cancer facts sheets: Breast cancer. Lyons, France: International Agency for research on Cancer; 2012. Accessed online on 27/10/2014.
2.D. B. Kopans, Breast Imaging, 3rd ed. (Lippincott Williams & Wilkins, Philadelphia, 2007).
4.A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” Ca-Cancer J. Clin. 61, 6990 (2011).
5., MedlinePlus, U. S. National Library of Medicine. Accessed online on 03/03/2014.
7.S. J. Glick, “Breast CT,” Annu. Rev. Biomed. Eng. 9, 501526 (2007).
8.NCI-funded Breast Cancer Surveillance Consortium (HHSN261201100031C). Downloaded 03/04/2014 from the Breast Cancer Surveillance Consortium Web site–
9.NCI-funded Breast Cancer Surveillance Consortium (HHSN261201100031C). Downloaded 09/22/2014 from the Breast Cancer Surveillance Consortium Web site–
10.A. Mittone, A. Bravin, and P. Coan, “Radiation dose in breast CT imaging with monochromatic x-rays: Simulation study of the influence of energy, composition and thickness,” Phys. Med. Biol. 59, 21992217 (2014).
11.B. Lazzari, G. Belli, C. Gori, and M. Rosselli Del Turco, “Physical characteristics of five clinical systems for digital mammography,” Med. Phys. 34, 27302743 (2007).
12.E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D’orsi, R. Jong, and M. Rebner, “Diagnostic performance of digital versus film mammography for breast-cancer screening,” N. Engl. J. Med. 353, 17731783 (2005).
13.R. Nowotny, Photon attenuation data on PC, XMuDat: Version 1.0.1 of August 1998, IAEA-NDS-195, Documentation series of the Nuclear data Services of the International Atomic energy Agency, 1998.
14.G. Gennaro and C. di Maggio, “Dose comparison between screen/film and full-field digital mammography,” Eur. Radiol. 16, 25592566 (2006).
15.R. E. Hendrick, E. D. Pisano, A. Averbukh, C. Moran, E. A. Berns, M. J. Yaffe, B. Herman, S. Acharyya, and C. Gatsonis, “Comparison of acquisition parameters and breast dose in digital mammography and screen-film mammography in the American college of radiology imaging network digital mammographic imaging screening trial,” Am. J. Roentgenol. 194, 123 (2010).
16.C. DeSantis, R. Siegel, P. Bandi, and A. Jemal, “Breast cancer statistics, 2011,” Ca-Cancer J. Clin. 61, 408418 (2011).
17.L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. Dejule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399406 (1997).
18. Accessed online on 03/14/2014.
19.US Food and Drug Administration. Selenia Dimensions 3D System–P080003. Accessed online on 02/02/2015.
22. Accessed online on 11/15/2014.
23.S. Ciatto, N. Houssami, D. Bernardi, F. Caumo, M. Pellegrini, S. Brunelli, P. Tuttobene, P. Bricolo, C. Fantò, M. Valentini, S. Montemezzi, and P. Macaskill, “Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): A prospective comparison study,” Lancet Oncol. 14, 583589 (2013).
24.G. Gennaro, R. E. Hendrick, P. Ruppel, R. Chersevani, C. di Maggio, M. La Grassa, L. Pescarini, I. Polico, A. Proietti, E. Baldan, E. Bezzon, F. Pomerri, and P. C. Muzzio, “Performance comparison of single-view digital breast tomosynthesis plus single-view digital mammography with two-view digital mammography,” Eur. Radiol. 23, 664672 (2013).
25.J. M. Park, E. A. Franken, Jr., M. Garg, L. L. Fajardo, and L. T. Niklason, “Breast tomosynthesis: Present considerations and future applications,” Radiographics 27, S231S240 (2007).
26.J. A. Baker and J. Y. Lo, “Breast tomosynthesis: State-of-the-art and review of the literature,” Acad. Radiol. 18, 12981310 (2011).
27.X. Gong, S. J. Glick, B. Liu, A. A. Vedula, and S. Thacker, “A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging,” Med. Phys. 33, 10411052 (2009).
28.C. Steiding, D. Kolditz, A.-C. Robler, and W. A. Kalender, “Quantitative assessment of the spatial dependence of non-stationary high contrast spatial resolution, low contrast detectability, and noise behaviour in 3d imaging of the breast,” in Presented at ECR 2014, European Congress of Radiology, Vienna, March 10 (2014).
29.A. Karellas, J. Y. Lo, and C. G. Orton, “Cone beam x-ray CT will be superior to digital x-ray tomosynthesis in imaging the breast and delineating cancer,” Med. Phys. 35, 409412 (2008).
30.D. F. Reese, J. A. Carney, J. J. Gisvold, P. R. Karsell, and S. A. Kollins, “Computerized reconstructive tomography applied to breast pathology,” Am. J. Roentgenol. 126, 406412 (1976).
31.C. H. J. Chang, J. U. Sibala, S. U. Fritz, J. H. Gallagher, S. J. Dwyer, and A. W. Templeton, “Computed tomographic evaluation of the breast,” Am. J. Roentgenol. 131, 459464 (1978).
32.J. J. Gisvold, D. F. Reese, and P. R. Karsell, “Computed tomographic mammography (CTM),” Am. J. Roentgenol. 133, 11431149 (1979).
33.J. M. Boone, T. R. Nelson, K. K. Lindfors, and J. A. Seibert, “Dedicated breast CT: Radiation dose and image quality evaluation,” Radiology 221, 657667 (2001).
34.I. Thierry-Chef, S. L. Simon, R. M. Weinstock, D. Kwon, and M. S. Linet, “Reconstruction of absorbed doses to fibroglandular tissue of the breast of women undergoing mammography (1960 to the present),” Radiat. Res. 177, 92108 (2012).
35.N. Geeraert, R. Klaus, S. Muller, I. Bloch, and H. Bosmans, “Breast characteristics and dosimetric data in x-ray mammography–A large sample survey,” in International Conference on Radiation Protection in Medicine–Setting the Scene for the Next Decade, Dec 2012, Bonn, Germany. CN-192(7), pp.15, 2012.
36.R. Ning, B. Chen, D. L. Conover, L. McHugh, J. Cullinan, and R. Yu, “Flat-panel detector-based cone-beam volume CT breast imaging: Preliminary phantom study,” Proc. SPIE 4320, 601610 (2001).
37.B. Chen and R. Ning, “Cone-beam volume CT mammographic imaging: Feasibility study,” Proc. SPIE 4320, 655664 (2001).
38.L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. A 1, 612619 (1984).
39.K. K. Lindfors, J. M. Boone, T. R. Nelson, K. Yang, A. L. C. Kwan, and F. M. DeWitt, “Dedicated breast CT: Initial clinical experience,” Radiology 246, 725733 (2008).
40.J. M. Boone, K. Yang, G. W. Burkett, N. J. Packard, S.-Y. Huang, S. Bowen, R. D. Badawi, and K. K. Lindfors, “An x-ray computed tomography/positron emission tomography system designed specifically for breast imaging,” Technol. Cancer Res. Treat. 9, 2944 (2010).
41.J. M. Boone, A. L. C. Kwan, K. Yang, G. W. Burkett, K. K. Lindfors, and R. N. Thomas, “Computed tomography for imaging the breast,” J. Mammary Gland Biol. Neoplasia 11, 103111 (2006).
42.Y. Wu, S. L. Bowen, K. Yang, N. Packard, L. Fu, G. Burkett, Jr., J. Qi, J. M. Boone, S. R. Cherry, and R. D. Badawi, “PET characteristics of a dedicated breast PET/CT scanner prototype,” Phys. Med. Biol. 154, 42734287 (2009).
43.R. L. McKinley, M. P. Tornai, C. Brzymialkiewicz, P. P. Madhav, E. Samei, and J. E. Bowsher, “Analysis of a novel offset cone-beam computed mammotomography system geometry for accommodating various breast sizes,” Phys. Med. 21, 148155 (2006).
44.G. Mettivier, P. Russo, M. Cesarelli, R. Ospizio, G. Passeggio, L. Roscilli, G. Pontoriere, and R. Rocco, “Dedicated scanner for laboratory investigations on cone-beam CT/SPECT imaging of the breast,” Nucl. Instrum. Methods Phys. Res., Sect. A 629, 350356 (2011).
45.N. D. Prionas, S. E. McKenney, R. L. Stern, and J. M. Boone, “Kilovoltage rotational external beam radiotherapy on a breast computed tomography platform: A feasibility study,” Int. J. Radiat. Oncol., Biol., Phys. 84, 533539 (2012).
46.S. Pani, R. Longo, D. Dreossi, F. Montanari, A. Olivo, F. Arfelli, A. Bergamaschi, P. Poropat, L. Rigon, F. Zanconati, L. Dalla Palma, and E. Castelli, “Breast tomography with synchrotron radiation: Preliminary results,” Phys. Med. Biol. 49, 17391754 (2004).
47.D. Xiao, L. Xu, S. Qi, Y. Yao, and Y. Kang, “A prototype of cone-beam breast computed tomography system and its performance evaluation,” in 3rd International Conference on Biomedical Engineering and Informatics (BMEI) (2010).
48.J. M. Boone, A. L. C. Kwan, J. A. Seibert, N. Shah, K. K. Lindfors, and T. R. Nelson, “Technique factors and their relationship to radiation dose in pendant geometry breast CT,” Med. Phys. 32, 37673776 (2005).
49.P. Gazi, K. Yang, G. Burkett, and J. M. Boone, “Development and spatial resolution characterization of a dedicated pulsed x-ray cone-beam breast CT system,” Proc. SPIE 8668, 86681D (2013).
50.A. L. C. Kwan, J. M. Boone, K. Yang, and S.-Y. Huang, “Evaluation of the spatial resolution characteristics of a cone-beam breast CT scanner,” Med. Phys. 34, 275281 (2007).
51.K. Yang, A. L. C. Kwan, and J. M. Boone, “Computer modeling of the spatial resolution properties of a dedicated breast CT system,” Med. Phys. 34, 20592069 (2007).
52.J. M. Boone, “Method for evaluating bow tie filter angle-dependent attenuation in CT: Theory and simulation results,” Med. Phys. 37, 4048 (2010).
53.J. M. Boone, N. Shah, and T. R. Nelson, “A comprehensive analysis of DgN(CT) coefficients for pendant-geometry cone-beam breast computed tomography,” Med. Phys. 31, 226235 (2004).
54.P. Gazi and J. M. Boone, “Improving the spatial resolution characteristics of dedicated cone-beam breast CT technology,” Proc. SPIE 9033, 903348 (2014).
55. Accessed online on 04/30/2014.
56.B. Chen and R. Ning, “Cone-beam volume CT breast imaging: Feasibility study,” Med. Phys. 29, 755770 (2002).
57.A. O’Connell, D. L. Conover, Y. Zhan, P. Seifert, W. Logan-Young, C.-F. L. Lin, L. Sahler, and R. Ning, “Cone-beam CT for breast imaging: Radiation dose, breast coverage, and image quality,” Am. J. Roentgenol. 195, 496509 (2010).
58.I. Sechopoulos, S. S. J. Feng, and C. J. D’Orsi, “Dosimetric characterization of a dedicated breast computed tomography clinical prototype,” Med. Phys. 37, 41104120 (2010).
59.D. Yang, R. Ning, and W. Cai, “Circle plus partial helical scan scheme for a flat panel detector-based cone beam breast x-ray CT,” Int. J. Biomed. Imaging 2009, 111.
60. Accessed online on 03/04/2014.
62.G. Mettivier and P. Russo, “Measurement of the MTF of a cone-beam breast computed tomography laboratory scanner,” IEEE Trans. Nucl. Sci. 58, 703713 (2011).
63.G. Mettivier, P. Russo, N. Lanconelli, and S. Lo Meo, “Cone-beam breast computed tomography with a displaced flat panel detector array,” Med. Phys. 39, 28052819 (2012).
64.G. Mettivier, N. Lanconelli, S. Lo Meo, and P. Russo, “Scatter correction in cone-beam breast computed tomography: Simulations and experiments,” IEEE Trans. Nucl. Sci. 59, 20082019 (2012).
65.G. Mettivier, P. Russo, N. Lanconelli, and S. Lo Meo, “Evaluation of scattering in cone-beam breast computed tomography: A Monte Carlo and experimental phantom study,” IEEE Trans. Nucl. Sci. 57, 25102517 (2010).
66.P. Russo, G. Mettivier, A. Lauria, and M. C. Montesi, “X-ray cone-beam breast computed tomography: Phantom studies,” IEEE Trans. Nucl. Sci. 57, 160172 (2010).
67.G. Mettivier and P. Russo, “Image quality and radiation dose in propagation-based phase-contrast mammography: A phantom study,” in Poster no. 98 presented at the “20th International Conference on Med. Phys.,” Brighton, UK, 1–4 September 2013.
68.G. Mettivier and P. Russo, “Cone-beam breast microCT: Image quality in propagation based phase-contrast imaging,” in Poster presented at the workshop “Taking X-Ray Phase-Contrast Imaging into Mainstream Applications,” Royal Society, London, UK, 11–12 February 2013.
69.P. Russo and G. Mettivier, “Beam hardening, CNR and SNR in cone-beam in line-phase-contrast computed microtomography,” in Poster presented at “2nd International Symposium on Biomedical Application of X-Ray Phase-contrast Imaging,” Garmish-Partenkirchen, Germany, 24–25 January 2013.
70.S.-Y. Huang, J. M. Boone, K. Yang, N. J. Packard, S. E. McKenney, N. D. Prionas, K. K. Lindfors, and M. J. Yaffe, “The characterization of breast anatomical metrics using dedicated breast CT,” Med. Phys. 38, 21802191 (2011).
71.D. J. Crotty, S. L. Brady, D’V. C. Jackson, G. I. Toncheva, C. E. Anderson, T. T. Yoshizumi, and M. P. Tornai, “Evaluation of the absorbed dose to the breast using radiochromic film in a dedicated CT mammotomography system employing a quasi-monochromatic x-ray beam,” Med. Phys. 38, 32323245 (2011).
72.R. L. McKinley, M. P. Tornai, E. Samei, and M. L. Bradshaw, “Simulation study of a quasi-monochromatic beam for x-ray computed mammotomography,” Med. Phys. 31, 800813 (2004).
73.D. J. Crotty, R. L. McKinley, and M. P. Tornai, “Experimental spectral measurements of heavy K-edge filtered beams for x-ray computed mammotomography,” Phys. Med. Biol. 52, 603616 (2007).
74.R. L. McKinley, M. P. Tornai, E. Samei, and M. L. Bradshaw, “Development of an optimal x-ray beam for dual-mode emission and transmission mammotomography,” Nucl. Instrum. Methods Phys. Res., Sect. A 527, 102109 (2004).
75.R. L. McKinley, M. P. Tornai, E. Samei, and M. L. Bradshaw, “Initial study of quasi-monochromatic x-ray beam performance for x-ray computed mammotomography,” IEEE Trans. Nucl. Sci. 52, 12431250 (2005).
76.P. Madhav, D. J. Crotty, R. L. McKinley, and M. P. Tornai, “Evaluation of tilted cone-beam CT orbits in the development of a dedicated hybrid mammotomograph,” Phys. Med. Biol. 54, 36593676 (2009).
77.R. L. McKinley, M. P. Tornai, L. A. Tuttle, D. Steed, and C. M. Kuzmiak, “Development and initial demonstration of a low-dose dedicated fully 3D breast CT system,” Breast Imaging, Lecture Notes in Computer Science Vol. 7361, edited by A. D. A. Maidment, P. R. Bakic, and S. Gavenonis (Springer-Verlag, Berlin, 2012), pp. 424433.
78. Accessed online on 02/09/2015.
79.Y. Shen, Y. Zhong, C.-J. Lai, T. Wang, and C. C. Shaw, “Cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS flat panel detector: Visibility of simulated microcalcifications,” Med. Phys. 40, 101915 (10pp.) (2013).
80.C. C. Shaw, L. Chen, M. C. Altunbas, S. Tu, X. Liu, T.-P. Wang, C.-J. Lai, S. C. Kappadath, and Y. Meng, “Cone beam breast CT with a flat panel detector- simulation, implementation and demonstration,” in Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference (IEEE, Shanghai, China, 2005).
81.W. T. Yang, S. Carkaci, L. Chen, C. J. Lai, A. Sahin, G. J. Whitman, and C. C. Shaw, “Dedicated cone-beam breast CT: Feasibility study with surgical mastectomy specimens,” Am. J. Roentgenol. 189, 13121315 (2007).
82.C. J. Lai, C. C. Shaw, L. Chen, M. C. Altunbas, X. Liu, T. Han, T. Wang, W. T. Yang, G. J. Whitman, and S.-J. Tu, “Visibility of microcalcification in cone beam breast CT: Effects of x-ray tube voltage and radiation dose,” Med. Phys. 34, 29953004 (2007).
83.C.-J. Lai, L. Chen, H. Zhang, X. Liu, Y. Zhong, Y. Shen, T. Han, S. Ge, Y. Yi, T. Wang, W. T. Yang, G. J. Whitman, and C. C. Shaw, “Reduction in x-ray scatter and radiation dose for volume-of-interest (VOI) cone-beam breast CT–A phantom study,” Phys. Med. Biol. 54, 66916709 (2009).
84.L. Chen, C. C. Shaw, M. C. Altunbas, C.-J. Lai, X. Liu, T. Han, T. Wang, W. T. Yang, and G. J. Whitman, “Feasibility of volume-of-interest (VOI) scanning technique in cone beam breast CT–A preliminary study,” Med. Phys. 35, 34823490 (2008).
85.S. Youtao, Y. Ying, Y. Zhong, C.-J. Lai, X. Liu, Z. You, S. Ge, T. Wang, and C. C. Shaw, “High resolution dual detector volume-of-interest cone beam breast CT—-Demonstration with a bench top system,” Med. Phys. 38, 64296442 (2011).
86.L. Chen, Y. Shen, C.-J. Lai, T. Han, Y. Zhong, S. Ge, X. Liu, T. Wang, W. T. Yang, G. J. Whitman, and C. C. Shaw, “Dual resolution cone beam breast CT: A feasibility study,” Med. Phys. 36, 40074014 (2009).
87.W. A. Kalender, M. Beister, J. M. Boone, D. Kolditz, S. V. Vollmar, and M. C. C. Weigel, “High-resolution spiral CT of the breast at very low dose: Concept and feasibility considerations,” Eur. Radiol. 22, 18 (2012).
88.W. A. Kalender, “Concepts for high-resolution CT of the breast,” in Digital Mammography, IWDM, Lecture Notes in Computer Science Vol. 6136, edited by J. Martì, A. Oliver, J. Freixenet, and R. Martì (Springer-Verlag, Berlin, 2010), pp. 421427.
89. Accessed online on 10/01/2014.
90.H. Q. Le, J. L. Ducote, and S. Molloi, “Radiation dose reduction using a CdZnTe-based computed tomography system: Comparison to flat-panel detectors,” Med. Phys. 37, 12251236 (2010).
91.B. Zhao, H. Gao, H. Ding, and S. Molloi, “Tight-frame based iterative reconstruction for spectral breast CT,” Med. Phys. 40, 031905(10pp.) (2013).
92.T. Johnson, H. Ding, H. Q. Le, J. L. Ducote, and S. Molloi, “Breast density quantification with cone-beam CT: A post-mortem study,” Phys. Med. Biol. 58, 85738591 (2013).
93.H. Ding, B. Zhao, P. Baturin, F. Behroozi, and S. Molloi, “Breast tissue decomposition with spectral distortion correction: A postmortem study,” Med. Phys. 41, 101901 (9pp.) (2014).
94.H. Ding, H. Gao, B. Zhao, H.-M. Cho, and S. Molloi, “A high-resolution photon-counting breast CT system with tensor-framelet based iterative image reconstruction for radiation dose reduction,” Phys. Med. Biol. 59, 60056016 (2014).
95.H.-M. Cho, W. C. Barber, H. Ding, J. S. Iwanczyk, and S. Molloi, “Characteristic performance evaluation of a photon counting Si strip detector for low dose spectral breast CT imaging,” Med. Phys. 41, 091903(10pp.) (2014).
96.P. Monnin, D. Gutierrez, S. Bulling, D. Guntern, and F. R. Verdun, “A comparison of the performance of digital mammography systems,” Med. Phys. 34, 906914 (2007).
97.J. Liu, R. Ning, W. Cai, and R. B. Benitez, “Enhancement of breast calcification visualization and detection using a modified PG method in cone beam breast CT,” J. X-ray Sci. Technol. 20, 107120 (2012).
98.X. Gong, A. A. Vedula, and S. J. Glick, “Microcalcification detection using cone-beam CT mammography with a flat-panel imager,” Phys. Med. Biol. 49, 21832195 (2004).
99.K. Yang, A. L. C. Kwan, S.-Y. Huang, N. J. Packard, and J. M. Boone, “Noise power properties of a cone-beam CT system for breast cancer detection,” Med. Phys. 35, 53175327 (2008).
100.J. H. Siewerdsen and D. A. Jaffray, “Cone-beam computed tomography with a flat-panel imager: Magnitude and effects of x-ray scatter,” Med. Phys. 28, 220231 (2001).
101.A. L. C. Kwan, J. M. Boone, and N. Shah, “Evaluation of x-ray scatter properties in a dedicated cone-beam breast CT scanner,” Med. Phys. 32, 29672975 (2005).
102.R. Ning, X. Tang, and D. Conover, “X-ray scatter correction algorithm for cone beam CT imaging,” Med. Phys. 31, 11951202 (2004).
103.K. Yang, G. Burkett, Jr., and J. M. Boone, “A breast-specific, negligible-dose scatter correction technique for dedicated cone beam breast CT: A physics-based approach to improve Hounsfield unit accuracy,” Phys. Med. Biol. 58, 64876505 (2014).
104.W. Cai, R. Ning, and D. Conover, “Scatter correction for clinical cone beam CT breast imaging based on breast phantom studies,” J. X-Ray Sci. Technol. 19, 91109 (2011).
105.I. Sechopoulos, “X-ray scatter correction method for dedicated breast computed tomography,” Med. Phys. 39, 28962903 (2012).
106.M. C. Altunbas, C. C. Shaw, L. Chen, C. Lai, X. Liu, T. Han, and T. Wang, “A post-reconstruction method to correct cupping artifacts in cone beam breast computed tomography,” Med. Phys. 39, 31093118 (2007).
107.Y. Chen, B. Liu, J. M. O’Connor, C. S. Didier, and S. J. Glick, “Characterization of scatter in cone-beam CT breast imaging: Comparison of experimental measurements and Monte Carlo simulations,” Med. Phys. 36, 857869 (2009).
108.L. Chen, C. K. Abbey, A. Nosratieh, K. K. Lindfors, and J. M. Boone, “Anatomical complexity in breast parenchyma and its implications for optimal breast imaging strategies,” Med. Phys. 39, 14351441 (2012).
109.N. J. Packard, C. K. Abbey, K. Yang, and J. M. Boone, “Effect of slice thickness on detectability in breast CT using a prewhitened matched filter and simulated mass lesions,” Med. Phys. 39, 18181830 (2012).
110.B. Zhao, X. Zhang, W. Cai, D. Conover, and R. Ning, “Cone beam breast CT with multiplanar and three dimensional visualization in differentiating breast masses compared with mammography,” Eur. J. Radiol. 84, 4853 (2015).
111.J. R. Dullum, E. C. Lewis, and J. A. Mayer, “Rates and correlates of discomfort associated with mammography,” Radiology 214, 547552 (2000).
112.R. Van Engen, K. Young, H. Bosmans, and M. Thijssen, “Addendum on digital mammography,” in European Guidelines for Quality Assurance in Mammography Screening, 1.0 ed. (European Reference Organization for Quality Assured Breast Screening and Diagnostic Services, EUREF, Nijmegen, The Netherlands, 2003), Chap. 3.
113.D. R. Dance, “Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose,” Phys. Med. Biol. 35, 12111219 (1980).
114.A. M. O’Connell and D. K. O’Connor, “Dedicated cone-beam breast computed tomography and diagnostic mammography: Comparison of radiation dose, patient comfort, and qualitative review of imaging findings in BI-RADS 4 and 5 lesions,” J. Clin. Imaging Sci. 2, 18 (2012).
115.S. Vedantham, L. Shi, A. Karellas, A. M. O’Connell, and D. L. Conover, “Personalized estimates of radiation dose from dedicated breast CT in a diagnostic population and comparison with diagnostic mammography,” Phys. Med. Biol. 58, 79217936 (2013).
116.N. Lanconelli, G. Mettivier, S. Lo Meo, and P. Russo, “Investigation of the dose distribution for a cone beam CT system dedicated to breast imaging,” Phys. Med. 29, 379387 (2013).
117.P. Russo, A. Lauria, G. Mettivier, M. C. Montesi, and N. Villani, “Dose distribution in cone-beam breast computed tomography: An experimental phantom study,” IEEE Trans. Nucl. Sci. 57, 366374 (2010).
118.P. Russo, T. Coppola, and G. Mettivier, “Distribution of absorbed dose in cone-beam breast computed tomography: A phantom study with radiochromic films,” IEEE Trans. Nucl. Sci. 57, 22202229 (2010).
119.Y. Yi, C.-J. Lai, T. Han, Y. Zhong, Y. Shen, X. Liu, S. Ge, Z. You, T. Wang, and C. C. Shaw, “Radiation doses in cone-beam breast computed tomography: A Monte Carlo simulation study,” Med. Phys. 38, 589597 (2011).
120.M. Beister, D. Kolditz, and W. A. Kalender, “Iterative reconstruction methods in x-ray CT,” Phys. Med. 28, 94108 (2012).
121.A. Makeev and S. J. Glick, “Investigation of statistical iterative reconstruction for dedicated breast CT,” Med. Phys. 40, 081904(8pp.) (2013).
122.J. Bian, K. Yang, J. M. Boone, X. Han, E. Y. Sidky, and X. Pan, “Investigation of iterative image reconstruction in low-dose breast CT,” Phys. Med. Biol. 59, 26592686 (2014).
123.K. G. Metheany, C. K. Abbey, N. Packard, and J. M. Boone, “Characterizing anatomical variability in breast CT images,” Med. Phys. 35, 46854694 (2008).
124.B. Zhao, H. Ding, Y. Lu, G. Wang, J. Zhao, and S. Molloi, “Dual-dictionary learning-based iterative image reconstruction for spectral computed tomography application,” Phys. Med. Biol. 57, 82178229 (2012).
125.J. M. Boone and K. K. Lindfors, “Breast CT: Potential for breast cancer screening and diagnosis,” Future Oncol. 2, 351356 (2006).

Data & Media loading...


Article metrics loading...



X-ray mammography of the compressed breast is well recognized as the “gold standard” for early detection of breast cancer, but its performance is not ideal. One limitation of screening mammography is tissue superposition, particularly for dense breasts. Since 2001, several research groups in the USA and in the European Union have developed computed tomography (CT) systems with digital detector technology dedicated to x-ray imaging of the uncompressed breast (breast CT or BCT) for breast cancer screening and diagnosis. This CT technology—tracing back to initial studies in the 1970s—allows some of the limitations of mammography to be overcome, keeping the levels of radiation dose to the radiosensitive breast glandular tissue similar to that of two-view mammography for the same breast size and composition. This paper presents an evaluation of the research efforts carried out in the invention, development, and improvement of BCT with dedicated scanners with state-of-the-art technology, including initial steps toward commercialization, after more than a decade of R&D in the laboratory and/or in the clinic. The intended focus here is on the technological/engineering aspects of BCT and on outlining advantages and limitations as reported in the related literature. Prospects for future research in this field are discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd