Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. Guillot, L. Gingras, L. Archambault, S. Beddar, and L. Beaulieu, “Toward 3D dosimetry of intensity modulated radiation therapy treatments with plastic scintillation detectors,” J. Phys.: Conf. Ser. 250, 012006 (2010).
2.A. S. Kirov, J. Z. Piao, N. Mathur, T. R. Miller, S. Devic, S. Trichter, M. Zaider, T. LoSasso, and C. Soares, “A test of the 3D scintillation dosimetry method for a Ru-106 eye plaque applicator,” Med. Phys. 32, 2002 (2005).
3.A. S. Kirov, J. Z. Piao, N. K. Mathur, T. R. Miller, S. Devic, S. Trichter, M. Zaider, C. G. Soares, and T. LoSasso, “The three-dimensional scintillation dosimetry method: Test for a 106Ru eye plaque applicator,” Phys. Med. Biol. 50, 30633081 (2005).
4.A. S. Kirov, S. Shrinivas, C. Hurlbut, J. F. Dempsey, W. R. Binns, and J. L. Poblete, “New water equivalent liquid scintillation solutions for 3D dosimetry,” Med. Phys. 27, 11561164 (2000).
5.F. Kroll, J. Pawelke, and L. Karsch, “Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography,” Med. Phys. 40, 082104 (12pp.) (2013).
6.H. S. Sakhalkar and M. Oldham, “Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation,” Med. Phys. 35, 101111 (2008).
7.M. McJury, M. Oldham, V. P. Cosgrove, P. S. Murphy, S. Doran, M. O. Leach, and S. Webb, “Radiation dosimetry using polymer gels: Methods and applications,” Br. J. Radiol. 73, 919929 (2000).
8.R. G. Kelly, K. J. Jordan, and J. J. Battista, “Optical CT reconstruction of 3D dose distributions using the ferrous-benzoic-xylenol (FBX) gel dosimeter,” Med. Phys. 25, 17411750 (1998).
9.S. Beddar, L. Archambault, N. Sahoo, F. Poenisch, G. T. Chen, M. T. Gillin, and R. Mohan, “Exploration of the potential of liquid scintillators for real-time 3D dosimetry of intensity modulated proton beams,” Med. Phys. 36, 17361743 (2009).
10.M. J. Maryanski, G. S. Ibbott, P. Eastman, R. J. Schulz, and J. C. Gore, “Radiation therapy dosimetry using magnetic resonance imaging of polymer gels,” Med. Phys. 23, 699705 (1996).
11.M. J. Maryanski, R. J. Schulz, G. S. Ibbott, J. C. Gatenby, J. Xie, D. Horton, and J. C. Gore, “Magnetic-resonance-imaging of radiation-dose distributions using a polymer-gel dosimeter,” Phys. Med. Biol. 39, 14371455 (1994).
12.A. K. Glaser, S. C. Davis, D. M. McClatchy, R. Zhang, B. W. Pogue, and D. J. Gladstone, “Projection imaging of photon beams by the Cerenkov effect,” Med. Phys. 40, 012101 (14pp.) (2013).
13.A. K. Glaser, S. C. Davis, W. H. Voigt, R. Zhang, B. W. Pogue, and D. J. Gladstone, “Projection imaging of photon beams using Cerenkov-excited fluorescence,” Phys. Med. Biol. 58, 601619 (2013).
14.A. K. Glaser, W. H. Voigt, S. C. Davis, R. Zhang, D. J. Gladstone, and B. W. Pogue, “Three-dimensional Cerenkov tomography of energy deposition from ionizing radiation beams,” Opt. Lett. 38, 634636 (2013).
15.T. Olding, O. Holmes, and L. J. Schreiner, “Cone beam optical computed tomography for gel dosimetry I: Scanner characterization,” Phys. Med. Biol. 55, 28192840 (2010).
16.T. Olding, O. Holmes, P. Dejean, K. B. McAuley, K. Nkongchu, G. Santyr, and L. J. Schreiner, “Small field dose delivery evaluations using cone beam optical computed tomography-based polymer gel dosimetry,” J. Med. Phys. 36, 314 (2011).
17.T. Olding and L. J. Schreiner, “Cone-beam optical computed tomography for gel dosimetry II: Imaging protocols,” Phys. Med. Biol. 56, 12591279 (2011).
18.H. S. Sakhalkar, J. Adamovics, G. Ibbott, and M. Oldham, “A comprehensive evaluation of the PRESAGE/optical-CT 3D dosimetry system,” Med. Phys. 36, 7182 (2009).
19.A. Thomas, J. Newton, J. Adamovics, and M. Oldham, “Commissioning and benchmarking a 3D dosimetry system for clinical use,” Med. Phys. 38, 48464857 (2011).
20.A. K. Glaser, R. Zhang, S. C. Davis, D. J. Gladstone, and B. W. Pogue, “Time-gated Cherenkov emission spectroscopy from linear accelerator irradiation of tissue phantoms,” Opt. Lett. 37, 11931195 (2012).
21.L. Archambault, T. M. Briere, and S. Beddar, “Transient noise characterization and filtration in CCD cameras exposed to stray radiation from a medical linear accelerator,” Med. Phys. 35, 43424351 (2008).
22.C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in IEEE International Conference on Computer Vision (IEEE, Bombay, India, 1988).
23.A. K. Glaser, R. Zhang, D. J. Gladstone, and B. W. Pogue, “Optical dosimetry of radiotherapy beams using Cherenkov radiation: The relationship between light emission and dose,” Phys. Med. Biol. 59, 37893811 (2014).
24.J. V. Siebers, P. J. Keall, B. Libby, and R. Mohan, “Comparison of EGS4 and MCNP4b Monte Carlo codes for generation of photon phase space distributions for a Varian 2100C,” Phys. Med. Biol. 44, 30093026 (1999).
25.P. Arce, P. Rato, M. Canadas, and J. I. Lagares, “GAMOS: a GEANT4-based Easy and Flexible Framework for Nuclear Geant4 Simulations,” Presented at the IEEE Nuclear Science Symposium Conference Record, NSS ’08 (2008).
26.S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. de Mora Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M. G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. P. Wellisch, T. Wenaus, D. C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche, “ geant4—A simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250303 (2003).
27.H. H. Liu, T. R. Mackie, and E. C. McCullough, “A dual source photon beam model used in convolution/superposition dose calculations for clinical megavoltage x-ray beams,” Med. Phys. 24, 19601974 (1997).
28.J. H. Hubbel and S. M. Seltzer, “Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements z = 1 to 92 and 48 additional substances of dosimetric interest (version 1.4)” (National Institute of Standards and Technology, Gaithersburg, MD, 2004),
29.L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. A 1, 612619 (1984).
30.N. Rezvani, D. Aruliah, K. Jackson, D. Moseley, and J. Siewerdsen, “OSCaR: An open-source cone-beam CT reconstruction tool for imaging research,” Med. Phys. 34, 2341 (2007),
31.L. C. Persoon, M. Podesta, W. J. van Elmpt, S. M. Nijsten, and F. Verhaegen, “A fast three-dimensional gamma evaluation using a GPU utilizing texture memory for on-the-fly interpolations,” Med. Phys. 38, 40324035 (2011).
32.F. Ponisch, L. Archambault, T. M. Briere, N. Sahoo, R. Mohan, S. Beddar, and M. T. Gillin, “Liquid scintillator for 2D dosimetry for high-energy photon beams,” Med. Phys. 36, 14781485 (2009).

Data & Media loading...


Article metrics loading...



To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF).

An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts.

3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm3 volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose.

The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd