Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/42/7/10.1118/1.4922684
1.
1.S. Strohmaier and G. Zwierzchowski, “Comparison of 60Co and 192Ir sources in HDR brachytherapy,” J. Contemp. Brachyther. 3, 199208 (2011).
http://dx.doi.org/10.5114/jcb.2011.26471
2.
2.A. Palmer, O. Hayman, and S. Muscat, “Treatment planning study of the 3D dosimetric differences between Co-60 and Ir-192 sources in high dose rate (HDR) brachytherapy for cervix cancer,” J. Contemp. Brachyther. 4, 5259 (2012).
http://dx.doi.org/10.5114/jcb.2012.27952
3.
3.M. Andrássy, Y. Niatsetsky, and J. Pérez-Calatayud, “Co-60 versus Ir-192 in HDR brachytherapy: Scientific and technological comparison,” Rev. Fis. Med. 13, 125130 (2012), see http://www.sefm.es/fisica-medica/es/download/?n=2012_2_13_co-60-frente-ir-192-braqu&idf=515_463_pdf_docrev.
4.
4.A. Ntekim, A. Adenipekun, B. Akinlade, and O. Campbell, “High dose rate brachytherapy in the treatment of cervical cancer: Preliminary experience with Cobalt 60 radionuclide source—A prospective study,” Clin. Med. Insights: Oncol. 4, 8994 (2010).
http://dx.doi.org/10.4137/CMO.S5269
5.
5.J. Richter, K. Baier, and M. Flentje, “Comparison of 60Cobalt and 192Iridium sources in high dose rate afterloading brachytherapy,” Strahlenther. Onkol. 184, 187192 (2008).
http://dx.doi.org/10.1007/s00066-008-1684-y
6.
6.M. A. Islam, M. M. Akramuzzaman, and G. A. Zakaria, “Dosimetric comparison between the microSelectron HDR 192Ir v2 source and the BEBIG 60Co source for HDR brachytherapy using the EGSnrc Monte Carlo transport code,” J. Med. Phys. 37, 219225 (2012).
http://dx.doi.org/10.4103/0971-6203.103608
7.
7.C. Candela-Juan, J. Perez-Calatayud, F. Ballester, and M. J. Rivard, “Calculated organ doses using Monte Carlo simulations in a reference male phantom undergoing HDR brachytherapy applied to localized prostate carcinoma,” Med. Phys. 40, 033901 (10pp.) (2013).
http://dx.doi.org/10.1118/1.4791647
8.
8.D. Baltas, G. Lymperopoulou, and N. Zamboglou, “On the use of HDR 60Co source with the MammoSite radiation therapy system,” Med. Phys. 35, 52635268 (2008).
http://dx.doi.org/10.1118/1.3002312
9.
9.D. Granero, J. Pérez-Calatayud, and F. Ballester, “Technical note: Dosimetric study of a new Co-60 source used in brachytherapy,” Med. Phys. 34, 34853488 (2007).
http://dx.doi.org/10.1118/1.2759602
10.
10.J. Vijande, D. Granero, J. Pérez-Calatayud, and F. Ballester, “Monte Carlo dosimetric study of the Flexisource Co-60 high dose rate source,” J. Contemp. Brachyther. 4, 3444 (2012).
http://dx.doi.org/10.5114/jcb.2012.27950
11.
11.M. T. B. Toossi, M. Abdollahi, and M. Ghorbani, “A Monte Carlo study on dose distribution validation of GZP6 60Co stepping source,” Rep. Pract. Oncol. Radiother. 18, 112116 (2013).
http://dx.doi.org/10.1016/j.rpor.2012.10.004
12.
12.P. Papagiannis, A. Angelopoulos, E. Pantelis, L. Sakelliou, P. Karaiskos, and Y. Shimizu, “Monte Carlo dosimetry of 60Co HDR brachytherapy sources,” Med. Phys. 30, 712721 (2003).
http://dx.doi.org/10.1118/1.1563662
13.
13.D. Baltas, K. Geramani, G. Ioannidis, K. Hierholz, B. Rogge, C. Kolotas, K. Muller-Sievers, N. Milickovic, B. Kober, and N. Zamboglou, “Comparison of calibration procedures for 192Ir high-dose-rate brachytherapy sources,” Int. J. Radiat. Oncol., Biol., Phys. 43, 653661 (1999).
http://dx.doi.org/10.1016/S0360-3016(98)00423-4
14.
14.D. Baltas, L. Sakelliou, and N. Zamboglou, The Physics of Modern Brachytherapy for Oncology (Taylor & Francis, New York, 2007), ISBN: 978-0-7503-0708-6.
15.
15.H. A. Azhari, F. Hensley, W. Schütte, and G. A. Zakaria, “Dosimetric verification of source strength for HDR afterloading units with Ir-192 and Co-60 photon sources: Comparison of three different international protocols,” J. Med. Phys. 37, 183192 (2012).
http://dx.doi.org/10.4103/0971-6203.103603
16.
16.A. Mesbahi and A. Naseri, “In-air calibration of new high dose rate 60Co brachytherapy sources: Results of measurements on a GZP6 brachytherapy afterloading unit,” Rep. Pract. Oncol. Radiother. 13, 6973 (2008).
http://dx.doi.org/10.1016/S1507-1367(10)60084-3
17.
17.S. J. Goetsch, F. H. Attix, D. W. Pearson, and B. R. Thomadsen, “Calibration of 192Ir high-dose-rate afterloading systems,” Med. Phys. 18, 462467 (1991).
http://dx.doi.org/10.1118/1.596649
18.
18.S. Goetsch, F. Attix, L. Dewerd, and B. Thomadsen, “A new re-entrant ionization chamber for the calibration of iridium-192 high dose rate sources,” Int. J. Radiat. Oncol., Biol., Phys. 24, 167170 (1992).
http://dx.doi.org/10.1016/0360-3016(92)91037-N
19.
19.R. Nath, L. L. Anderson, J. A. Meli, A. J. Olch, J. A. Stitt, and J. F. Williamson, “Code of practice for brachytherapy physics: Report of the AAPM radiation therapy committee task group no. 56,” Med. Phys. 24, 15571598 (1997).
http://dx.doi.org/10.1118/1.597966
20.
20.C. G. Soares, G. Douysset, and M. G. Mitch, “Primary standards and dosimetry protocols for brachytherapy sources,” Metrologia 46, S80S98 (2009).
http://dx.doi.org/10.1088/0026-1394/46/2/S06
21.
21.T. Sander, “Air kerma and absorbed dose standards for reference dosimetry in brachytherapy,” Br. J. Radiol. 87, 20140176 (2014).
http://dx.doi.org/10.1259/bjr.20140176
22.
22.B. E. Rasmussen, S. D. Davis, C. R. Schmidt, J. A. Micka, and L. A. DeWerd, “Comparison of air-kerma strength determinations for HDR 192Ir sources,” Med. Phys. 38, 67216729 (2011).
http://dx.doi.org/10.1118/1.3656683
23.
23.J. Lee, S. Su, M. Hsieh, I. Chen, J. Liang, and S. Hsu, “Air kerma standard and measurement comparison on source strength determination for high-dose rate 192Ir brachytherapy in Taiwan,” Radiat. Prot. Dosim. 146, 100102 (2011).
http://dx.doi.org/10.1093/rpd/ncr121
24.
24.G. Douysset, J. Gouriou, F. Delaunay, L. DeWerd, K. Stump, and J. Micka, “Comparison of dosimetric standards of USA and France for HDR brachytherapy,” Phys. Med. Biol. 50, 19611978 (2005).
http://dx.doi.org/10.1088/0031-9155/50/9/003
25.
25.G. Douysset, T. Sander, J. Gouriou, and R. Nutbrown, “Comparison of air kerma standards of LNE-LNHB and NPL for 192Ir HDR brachytherapy sources: EUROMET project no 814,” Phys. Med. Biol. 53, N85N97 (2008).
http://dx.doi.org/10.1088/0031-9155/53/6/N02
26.
26.H.-J. Selbach, “Neue kalibrieranlage für 192Ir- und 60Co-brachytherapie-strahlungsquellen,” inMedizinische Physik 2006–Tagungsband der 37. Jahrestagung der DGMP (Deutsche Gesellschaft für Medizinische Physik, Regensburg, 2006), p. 244, ISBN 3-925218-87-4.
27.
27.G. Douysset, A. Ostrowsky, and F. Delaunay, “Some unexpected behaviours of PTW/Nucletron well-type ionization chambers,” Phys. Med. Biol. 53, N269N275 (2008).
http://dx.doi.org/10.1088/0031-9155/53/14/N01
28.
28.Approval certificate for special form radioactive material rus/5900/s-96, ROSATOM State Corporation for Atomic Energy, Russian Federation, 2011.
29.
29.International Commission on Radiation Units and Measurements, “Dose and volume specification for reporting intracavitary therapy in Gynecology,” ICRU Report 38, International Commission on Radiation Units and Measurements, 1985.
30.
30.IAEA, “Calibration of photon and beta ray sources used in brachytherapy,” IAEA Tecdoc-1274, 2002.
31.
31.J. Venselaar and J. Pérez-Calatayud, Estro Booklet No. 8–A Practical Guide to Quality Control of Brachytherapy Equipment (Estro, Brussels, 2004), ISBN: 90-804532-8.
32.
32.L. Büermann, H.-M. Kramer, H. Schrader, and H.-J. Selbach, “Activity determination of 192Ir solid sources by ionization chamber measurements using calculated corrections for self-absorption,” Nucl. Instrum. Methods Phys. Res., Sect. A 339, 369376 (1994).
http://dx.doi.org/10.1016/0168-9002(94)91833-3
33.
33.L. Büermann, H.-M. Kramer, and I. Csete, “Results supporting calculated wall correction factors for cavity chambers,” Phys. Med. Biol. 48, 35813594 (2003).
http://dx.doi.org/10.1088/0031-9155/48/21/009
34.
34.C. Kessler, D. T. Burns, and L. Büermann, “Key comparison BIPM.RI(I)-K1 of the air-kerma standards of the PTB, Germany and the BIPM in 60Co gamma radiation,” Metrologia 51, 06012 (10 pp.) (2014).
http://dx.doi.org/10.1088/0026-1394/51/1A/06012
35.
35.L. Büermann and D. T. Burns, “Air-kerma cavity standards,” Metrologia 46, S24S38 (2009).
http://dx.doi.org/10.1088/0026-1394/46/2/S03
36.
36.H.-J. Selbach and L. Büermann, “‘Vergleich zweier verfahren zur darstellung der einheit der kenndosisleistung für 192Ir-HDR-brachytherapiequellen,” in Medizinische Physik 2004—Tagungsband der 35. Jahrestagung der DGMP (Deutsche Gesellschaft für Medizinische Physik, Leipzig, 2004), p. 82, ISBN 3-925218-84-x.
37.
37.F. Verhaegen, E. van Dijk, H. Thierens, A. Aalbers, and J. Seuntjens, “Calibration of low activity 192Ir brachytherapy sources in terms of reference air kerma rate with large volume spherical ionization chambers,” Phys. Med. Biol. 37, 20712082 (1992).
http://dx.doi.org/10.1088/0031-9155/37/11/004
38.
38.J. Hubbell and S. Seltzer, Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients (version 1.4), NIST, Gaithersburg, MD, 2004, available at http://physics.nist.gov/xaamdi.
39.
39.S. Kondo and M. L. Randolph, “Effect of finite size of ionization chambers on measurements of small photon sources,” Radiat. Res. 13, 3760 (1960).
http://dx.doi.org/10.2307/3570872
40.
40.M. B. Podgorsak, L. A. DeWerd, B. R. Thomadsen, and B. R. Paliwal, “Thermal and scatter effects on the radiation sensitivity of well chambers used for high dose rate Ir-192 calibrations,” Med. Phys. 19, 13111314 (1992).
http://dx.doi.org/10.1118/1.596764
41.
41.Letter from Hugh Petersen, Standard Imaging to PTB dated September 25, 2014.
42.
42.P. B. Scott and J. R. Greening, “The determination of saturation currents in free-air ionization chambers by extrapolation methods,” Phys. Med. Biol. 8, 5157 (1963).
http://dx.doi.org/10.1088/0031-9155/8/1/304
43.
43.F. H. Attix, “Determination of AIon and PIon in the new AAPM radiotherapy dosimetry protocol,” Med. Phys. 11, 714716 (1984).
http://dx.doi.org/10.1118/1.595563
44.
44.Letter from Dr. C. Pychlau, PTW-Freiburg to PTB dated September 30, 2014.
45.
45.GUM, “Evaluation of measurement data - guide to the expression of uncertainty in measurement,” JCGM 100, 1120 (2008), see http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf.
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/42/7/10.1118/1.4922684
Loading
/content/aapm/journal/medphys/42/7/10.1118/1.4922684
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/42/7/10.1118/1.4922684
2015-06-22
2016-09-25

Abstract

The aim of this study was to investigate whether a chamber-type-specific radiation quality correction factor can be determined in order to measure the reference air kerma rate of 60Co high-dose-rate (HDR) brachytherapy sources with acceptable uncertainty by means of a well-type ionization chamber calibrated for 192Ir HDR sources.

The calibration coefficients of 35 well-type ionization chambers of two different chamber types for radiation fields of 60Co and 192Ir HDR brachytherapy sources were determined experimentally. A radiation quality correction factor was determined as the ratio of the calibration coefficients for 60Co and 192Ir. The dependence on chamber-to-chamber variations, source-to-source variations, and source strength was investigated.

For the PTW T33004 (Nucletron source dosimetry system (SDS)) well-type chamber, the type-specific radiation quality correction factor is 1.19. Note that this value is valid for chambers with the serial number, SN ≥ 315 (Nucletron SDS SN ≥ 548) onward only. For the Standard Imaging HDR 1000 Plus well-type chambers, the type-specific correction factor is 1.05. Both values are independent of the source strengths in the complete clinically relevant range. The relative expanded uncertainty ( = 2) of is = 2.1% for both chamber types.

The calibration coefficient of a well-type chamber for radiation fields of 60Co HDR brachytherapy sources can be calculated from a given calibration coefficient for 192 Ir radiation by using a chamber-type-specific radiation quality correction factor . However, the uncertainty of a 60Co calibration coefficient calculated via is at least twice as large as that for a direct calibration with a 60Co source.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/42/7/1.4922684.html;jsessionid=7o-e2PbHotofwhVS1ZUtPEtR.x-aip-live-03?itemId=/content/aapm/journal/medphys/42/7/10.1118/1.4922684&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/42/7/10.1118/1.4922684&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/42/7/10.1118/1.4922684'
Right1,Right2,Right3,