Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/42/8/10.1118/1.4923179
1.
1.Q. J. Wu, T. Li, Q. Wu, and F. Yin, “Adaptive radiation therapy: Technical components and clinical applications,” Cancer J. 17, 182189 (2011).
http://dx.doi.org/10.1097/PPO.0b013e31821da9d8
2.
2.X. Li, E. Quan, Y. Li, X. Pan, Y. Zhou, X. Wang, W. Du, R. Kudchadker, J. Johnson, and D. Kuban, “A fully automated method for CT-on-rails-guided online adaptive planning for prostate cancer intensity modulated radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 86, 835841 (2013).
http://dx.doi.org/10.1016/j.ijrobp.2013.04.014
3.
3.K. M. Langen, Y. Zhang, R. D. Andrews, M. E. Hurley, S. L. Meeks, D. O. Poole, T. R. Willoughby, and P. A. Kupelian, “Initial experience with megavoltage (MV) CT guidance for daily prostate alignments,” Int. J. Radiat. Oncol., Biol., Phys. 62, 15171524 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2005.02.047
4.
4.M. A. Hawkins, C. Brooks, V. N. Hansen, A. Aitken, and D. M. Tait, “Cone beam computed tomography–derived adaptive radiotherapy for radical treatment of esophageal cancer,” Int. J. Radiat. Oncol., Biol., Phys. 77, 378383 (2010).
http://dx.doi.org/10.1016/j.ijrobp.2009.05.045
5.
5.S. Yoo and F. Yin, “Dosimetric feasibility of cone-beam CT-based treatment planning compared to CT-based treatment planning,” Int. J. Radiat. Oncol., Biol., Phys. 66, 15531561 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2006.08.031
6.
6.J. Star-Lack, M. Sun, A. Kaestner, R. Hassanein, G. Virshup, T. Berkus, and M. Oelhafen, “Efficient scatter correction using asymmetric kernels,” Proc. SPIE 7258, 72581Z (2009).
http://dx.doi.org/10.1117/12.811578
7.
7.E. Mainegra-Hing and I. Kawrakow, “Fast Monte Carlo calculation of scatter corrections for CBCT images,” J. Phys.: Conf. Ser. 102, 012017 (2008).
http://dx.doi.org/10.1088/1742-6596/102/1/012017
8.
8.R. Ning, X. Tang, and D. Conover, “X-ray scatter correction algorithm for cone beam CT imaging,” Med. Phys. 31, 11951202 (2004).
http://dx.doi.org/10.1118/1.1711475
9.
9.J. Li, W. Yao, Y. Xiao, and Y. Yu, “Feasibility of improving cone-beam CT number consistency using a scatter correction algorithm,” J. Appl. Clin. Med. Phys. 14, 167176 (2013).
http://dx.doi.org/10.1120/jacmp.v14i6.4346
10.
10.M. Zhang, D. C. Westerly, and T. R. Mackie, “Introducing an on-line adaptive procedure for prostate image guided intensity modulate proton therapy,” Phys. Med. Biol. 56, 49474965 (2011).
http://dx.doi.org/10.1088/0031-9155/56/15/019
11.
11.E. J. Koay, D. Lege, R. Mohan, R. Komaki, J. D. Cox, and J. Y. Chang, “Adaptive/nonadaptive proton radiation planning and outcomes in a phase II trial for locally advanced non-small cell lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. 84, 10931100 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2012.02.041
12.
12.G. Landry, G. Dedes, C. Zollner, J. Handrack, G. Janssens, J. Orban de Xivry, M. Reiner, C. Paganelli, M. Riboldi, F. Kamp, M. Sohn, J. J. Wilkens, G. Baroni, C. Belka, and K. Parodi, “Phantom based evaluation of CT to CBCT image registration for proton therapy dose recalculation,” Phys. Med. Biol. 60, 595613 (2015).
http://dx.doi.org/10.1088/0031-9155/60/2/595
13.
13.G. Landry, R. Nijhuis, G. Dedes, J. Handrack, C. Thieke, G. Janssens, J. Orban de Xivry, M. Reiner, F. Kamp, J. J. Wilkens, C. Paganelli, M. Riboldi, G. Baroni, U. Ganswindt, C. Belka, and K. Parodi, “Investigating CT to CBCT image registration for head and neck proton therapy as a tool for daily dose recalculation,” Med. Phys. 42, 13541366 (2015).
http://dx.doi.org/10.1118/1.4908223
14.
14.L. De Marzi, C. Lesven, R. Ferrand, J. Sage, T. Boulé, and A. Mazal, “Calibration of CT Hounsfield units for proton therapy treatment planning: Use of kilovoltage and megavoltage images and comparison of parameterized methods,” Phys. Med. Biol. 58, 42554276 (2013).
http://dx.doi.org/10.1088/0031-9155/58/12/4255
15.
15.S. Rit, M. Oliva, S. Brousmiche, R. Labarbe, D. Sarrut, and G. Sharp, “The reconstruction toolkit (RTK), an open-source cone-beam CT reconstruction toolkit based on the insight toolkit (ITK),” J. Phys.: Conf. Ser. 489, 012079 (2014).
http://dx.doi.org/10.1088/1742-6596/489/1/012079
16.
16.R. Boellaard, M. van Herk, H. Uiterwaal, and B. Mijnheer, “Two-dimensional exit dosimetry using a liquid-filled electronic portal imaging device and a convolution model,” Radiother. Oncol. 44, 149157 (1997).
http://dx.doi.org/10.1016/S0167-8140(97)00073-X
17.
17.A. Richter, Q. Hu, D. Steglich, K. Baier, J. Wilbert, M. Guckenberger, and M. Flentje, “Investigation of the usability of conebeam CT data sets for dose calculation,” Radiat. Oncol. 3, 42 (2008).
http://dx.doi.org/10.1186/1748-717X-3-42
18.
18.T. Niu, M. Sun, J. Star-Lack, H. Gao, Q. Fan, and L. Zhu, “Shading correction for on-board cone-beam CT in radiation therapy using planning MDCT images,” Med. Phys. 37, 53955406 (2010).
http://dx.doi.org/10.1118/1.3483260
19.
19.P. M. Joseph, “An improved algorithm for reprojecting rays through pixel images,” IEEE Trans. Med. Imaging 1(3), 191197 (1982).
http://dx.doi.org/10.1109/TMI.1982.4307572
20.
20.T. Niu, A. Al-Basheer, and L. Zhu, “Quantitative cone-beam CT imaging in radiation therapy using planning CT as a prior: First patient studies,” Med. Phys. 39, 19912000 (2012).
http://dx.doi.org/10.1118/1.3693050
21.
21.J. A. Shackleford, N. Kandasamy, and G. Sharp, “On developing B-spline registration algorithms for multi-core processors,” Phys. Med. Biol. 55, 63296351 (2010).
http://dx.doi.org/10.1088/0031-9155/55/21/001
22.
22.M. Moyers, D. Miller, J. Siebers, R. Galindo, S. Sun, M. Sardesai, and L. Chan, “Water equivalence of various materials for 155 to 250 MeV protons,” Med. Phys. 19, 829 (1992).
23.
23.J. Phillips, G. Gueorguiev, J. A. Shackleford, C. Grassberger, S. Dowdell, H. Paganetti, and G. C. Sharp, “Computing proton dose to irregularly moving targets,” Phys. Med. Biol. 59, 42614273 (2014).
http://dx.doi.org/10.1088/0031-9155/59/15/4261
24.
24.R. Zhang and W. D. Newhauser, “Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation,” Phys. Med. Biol. 54, 13831395 (2009).
http://dx.doi.org/10.1088/0031-9155/54/6/001
25.
25.U. Schneider, E. Pedroni, and A. Lomax, “The calibration of CT Hounsfield units for radiotherapy treatment planning,” Phys. Med. Biol. 41, 111124 (1996).
http://dx.doi.org/10.1088/0031-9155/41/1/009
26.
26.L. Hong, M. Goitein, M. Bucciolini, R. Comiskey, B. Gottschalk, S. Rosenthal, C. Serago, and M. Urie, “A pencil beam algorithm for proton dose calculations,” Phys. Med. Biol. 41, 13051330 (1996).
http://dx.doi.org/10.1088/0031-9155/41/8/005
27.
27.D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, “A technique for the quantitative evaluation of dose distributions,” Med. Phys. 25, 656661 (1998).
http://dx.doi.org/10.1118/1.598248
28.
28.J. R. Sykes, D. S. Brettle, D. R. Magee, and D. I. Thwaites, “Investigation of uncertainties in image registration of cone beam CT to CT on an image-guided radiotherapy system,” Phys. Med. Biol. 54, 72637283 (2009).
http://dx.doi.org/10.1088/0031-9155/54/24/002
29.
29.J. Kim, S. Kumar, C. Liu, H. Zhong, D. Pradhan, M. Shah, R. Cattaneo, R. Yechieli, J. R. Robbins, M. A. Elshaikh, and I. J. Chetty, “A novel approach for establishing benchmark CBCT/CT deformable image registrations in prostate cancer radiotherapy,” Phys. Med. Biol. 58, 80778097 (2013).
http://dx.doi.org/10.1088/0031-9155/58/22/8077
30.
30.B. Schaffner and E. Pedroni, “The precision of proton range calculations in proton radiotherapy treatment planning: Experimental verification of the relation between CT-HU and proton stopping power,” Phys. Med. Biol. 43, 15791592 (1998).
http://dx.doi.org/10.1088/0031-9155/43/6/016
31.
31.S. España and H. Paganetti, “The impact of uncertainties in the CT conversion algorithm when predicting proton beam ranges in patients from dose and PET-activity distributions,” Phys. Med. Biol. 55, 75577571 (2010).
http://dx.doi.org/10.1088/0031-9155/55/24/011
32.
32.H. Paganetti, “Range uncertainties in proton therapy and the role of Monte Carlo simulations,” Phys. Med. Biol. 57, R99R117 (2012).
http://dx.doi.org/10.1088/0031-9155/57/11/R99
33.
33.R. E. Suri, G. Virshup, L. Zurkirchen, and W. Kaissl, “Comparison of scatter correction methods for CBCT,” Proc. SPIE 6142, 614238 (2006).
http://dx.doi.org/10.1117/12.652283
34.
34.S. T. Schindera, I. Tock, D. Marin, R. C. Nelson, R. Raupach, M. Hagemeister, G. von Allmen, P. Vock, and Z. Szucs-Farkas, “Effect of beam hardening on arterial enhancement in thoracoabdominal CT angiography with increasing patient size: An in vitro and in vivo study,” Radiology 256, 528535 (2010).
http://dx.doi.org/10.1148/radiol.10092086
35.
35.J. Hsieh, R. C. Molthen, C. A. Dawson, and R. H. Johnson, “An iterative approach to the beam hardening correction in cone beam CT,” Med. Phys. 27, 2329 (2000).
http://dx.doi.org/10.1118/1.598853
36.
36.X. Jia, Y. Lou, R. Li, W. Y. Song, and S. B. Jiang, “GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation,” Med. Phys. 37, 17571760 (2010).
http://dx.doi.org/10.1118/1.3371691
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/42/8/10.1118/1.4923179
Loading
/content/aapm/journal/medphys/42/8/10.1118/1.4923179
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/42/8/10.1118/1.4923179
2015-07-02
2016-09-27

Abstract

To demonstrate the feasibility of proton dose calculation on scatter-corrected cone-beam computed tomographic (CBCT) images for the purpose of adaptive proton therapy.

CBCT projection images were acquired from anthropomorphic phantoms and a prostate patient using an on-board imaging system of an Elekta infinity linear accelerator. Two previously introduced techniques were used to correct the scattered x-rays in the raw projection images: uniform scatter correction (CBCT ) and CT-based scatter correction (CBCT ). CBCT images were reconstructed using a standard FDK algorithm and GPU-based reconstruction toolkit. Soft tissue ROI-based HU shifting was used to improve HU accuracy of the uncorrected CBCT images and CBCT , while no HU change was applied to the CBCT . The degree of equivalence of the corrected CBCT images with respect to the reference CT image (CT ) was evaluated by using angular profiles of water equivalent path length (WEPL) and passively scattered proton treatment plans. The CBCT was further evaluated in more realistic scenarios such as rectal filling and weight loss to assess the effect of mismatched prior information on the corrected images.

The uncorrected CBCT and CBCT images demonstrated substantial WEPL discrepancies (7.3 ± 5.3 mm and 11.1 ± 6.6 mm, respectively) with respect to the CT , while the CBCT images showed substantially reduced WEPL errors (2.4 ± 2.0 mm). Similarly, the CBCT -based treatment plans demonstrated a high pass rate (96.0% ± 2.5% in 2 mm/2% criteria) in a 3D gamma analysis.

CT-based scatter correction technique was shown to be promising for adaptive proton therapy, as it achieved equivalent proton dose distributions and water equivalent path lengths compared to those of a reference CT in a selection of anthropomorphic phantoms.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/42/8/1.4923179.html;jsessionid=okIh18wZiXER7uJxiczswvV2.x-aip-live-02?itemId=/content/aapm/journal/medphys/42/8/10.1118/1.4923179&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/42/8/10.1118/1.4923179&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/42/8/10.1118/1.4923179'
Right1,Right2,Right3,