Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/42/8/10.1118/1.4926777
1.
1.B. Madore, G. H. Glover, and N. J. Pelc, “Unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI,” Magn. Reson. Med. 42, 813828 (1999).
http://dx.doi.org/10.1002/(SICI)1522-2594(199911)42:5¡813::AID-MRM1¿3.0.CO;2-S
2.
2.J. Tsao, P. Boesiger, and K. P. Pruessmann, “k-t BLAST and k-t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations,” Magn. Reson. Med. 50, 10311042 (2003).
http://dx.doi.org/10.1002/mrm.10611
3.
3.U. Gamper, P. Boesiger, and S. Kozerke, “Compressed sensing in dynamic MRI,” Magn. Reson. Med. 59, 365373 (2008).
http://dx.doi.org/10.1002/mrm.21477
4.
4.G. Adluru, C. McGann, P. Speier, E. G. Kholmovski, A. Shaaban, and E. V. Dibella, “Acquisition and reconstruction of undersampled radial data for myocardial perfusion magnetic resonance imaging,” J. Magn. Reson. Imaging 29, 466473 (2009).
http://dx.doi.org/10.1002/jmri.21585
5.
5.H. Pedersen, S. Kozerke, S. Ringgaard, K. Nehrke, and W. Y. Kim, “k-t PCA: Temporally constrained k-t BLAST reconstruction using principal component analysis,” Magn. Reson. Med. 62, 706716 (2009).
http://dx.doi.org/10.1002/mrm.22052
6.
6.S. G. Lingala, Y. Hu, E. DiBella, and M. Jacob, “Accelerated dynamic MRI exploiting sparsity and low-rank structure: K-t SLR,” IEEE Trans. Med. Imaging 30, 10421054 (2011).
http://dx.doi.org/10.1109/TMI.2010.2100850
7.
7.R. Otazo, D. Kim, L. Axel, and D. K. Sodickson, “Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI,” Magn. Reson. Med. 64, 767776 (2010).
http://dx.doi.org/10.1002/mrm.22463
8.
8.E. Candès and B. Recht, “Exact matrix completion via convex optimization,” Found. Comput. Math. 9, 717772 (2009).
http://dx.doi.org/10.1007/s10208-009-9045-5
9.
9.B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization,” SIAM Rev. 52, 471501 (2010).
http://dx.doi.org/10.1137/070697835
10.
10.J. P. Haldar and L. Zhi-Pei, “Spatiotemporal imaging with partially separable functions: A matrix recovery approach,” Presented at the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2010.
11.
11.A. Majumdar and R. K. Ward, “Causal dynamic MRI reconstruction via nuclear norm minimization,” Magn. Reson. Imaging 30, 14831494 (2012).
http://dx.doi.org/10.1016/j.mri.2012.04.012
12.
12.Z. Bo, J. P. Haldar, A. G. Christodoulou, and L. Zhi-Pei, “Image reconstruction from highly undersampled (k,t)-space data with joint partial separability and sparsity constraints,” IEEE Trans. Med. Imaging 31, 18091820 (2012).
http://dx.doi.org/10.1109/tmi.2012.2203921
13.
13.C. Brinegar, S. S. Schmitter, N. N. Mistry, G. A. Johnson, and Z.-P. Liang, “Improving temporal resolution of pulmonary perfusion imaging in rats using the partially separable functions model,” Magn. Reson. Med. 64, 11621170 (2010).
http://dx.doi.org/10.1002/mrm.22500
14.
14.J. P. Haldar and Z. P. Liang, “Low-rank approximations for dynamic imaging,” Presented at the IEEE International Symposium on Biomedical Imaging, Chicago, Illinois (2011).
15.
15.A. Majumdar and R. K. Ward, “An algorithm for sparse MRI reconstruction by Schatten p-norm minimization,” Magn. Reson. Imaging 29, 408417 (2011).
http://dx.doi.org/10.1016/j.mri.2010.09.001
16.
16.L. Zhi-Pei, “Spatiotemporal imaging with partially separable functions,” Presented at the 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2007, ISBI, 2007.
17.
17.S. G. Lingala and M. Jacob, “A blind compressive sensing frame work for accelerated dynamic MRI,” Presented at the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2011, Barcelona, Spain (2012).
18.
18.L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D 60, 259268 (1992).
http://dx.doi.org/10.1016/0167-2789(92)90242-F
19.
19.S. G. Lingala and M. Jacob, “Blind compressive sensing dynamic MRI,” IEEE Trans. Med. Imaging 32, 11321145 (2013).
http://dx.doi.org/10.1109/tmi.2013.2255133
20.
20.G. Adluru and E. V. Dibella, “Reordering for improved constrained reconstruction from undersampled k-space data,” Int. J. Biomed. Imaging 2008, 341684.
http://dx.doi.org/10.1155/2008/341684
21.
21.B. Wu, R. P. Millane, R. Watts, and P. J. Bones, “Prior estimate-based compressed sensing in parallel MRI,” Magn. Reson. Med. 65, 8395 (2011).
http://dx.doi.org/10.1002/mrm.22545
22.
22.L. Ramirez, C. Prieto, C. Sing-Long, S. Uribe, P. Batchelor, C. Tejos, and P. Irarrazaval, “TRIO a technique for reconstruction using intensity order: Application to undersampled MRI,” IEEE Trans. Med. Imaging 30, 15661576 (2011).
http://dx.doi.org/10.1109/tmi.2011.2132139
23.
23.Z. Lin, M. Chen, and Y. Ma, “The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrix,” Technical Report UILU-ENG-09–2215 (UIUC, 2009).
24.
24.J.-F. Cai, E. J. Candes, and Z. Shen, “A singular value thresholding algorithm for matrix completion,” SIAM J. Optim. 20, 19561982 (2010).
http://dx.doi.org/10.1137/080738970
25.
25.D. A. Feinberg, T. G. Reese, and V. J. Wedeen, “Simultaneous echo refocusing in EPI,” Magn. Reson. Med. 48, 15 (2002).
http://dx.doi.org/10.1002/mrm.10227
26.
26.P. S. Tofts, G. Brix, D. L. Buckley, J. L. Evelhoch, E. Henderson, M. V. Knopp, H. B. W. Larsson, T.-Y. Lee, N. A. Mayr, G. J. M. Parker, R. E. Port, J. Taylor, and R. M. Weisskoff, “Estimating kinetic parameters from dynamic contrast-enhanced t1-weighted MRI of a diffusable tracer: Standardized quantities and symbols,” J. Magn. Reson. Imaging 10, 223232 (1999).
http://dx.doi.org/10.1002/(SICI)1522-2586(199909)10:3¡223::AID-JMRI2¿3.0.CO;2-S
27.
27.F. A. Breuer, M. Blaimer, R. M. Heidemann, M. F. Mueller, M. A. Griswold, and P. M. Jakob, “Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging,” Magn. Reson. Med. 53, 684691 (2005).
http://dx.doi.org/10.1002/mrm.20401
28.
28.K. Setsompop, B. A. Gagoski, J. R. Polimeni, T. Witzel, V. J. Wedeen, and L. L. Wald, “Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty,” Magn. Reson. Med. 67, 12101224 (2012).
http://dx.doi.org/10.1002/mrm.23097
29.
29.R. Gebker, C. Jahnke, R. Manka, M. Frick, T. Hucko, S. Kozerke, B. Schnackenburg, E. Fleck, and I. Paetsch, “High spatial resolution myocardial perfusion imaging during high dose dobutamine/atropine stress magnetic resonance using k–t SENSE,” Int. J. Cardiol. 158, 411416 (2012).
http://dx.doi.org/10.1016/j.ijcard.2011.01.060
30.
30.R. Gebker, C. Jahnke, I. Paetsch, B. Schnackenburg, S. Kozerke, A. Bornstedt, E. Fleck, and E. Nagel, “MR myocardial perfusion imaging with k-space and time broad-use linear acquisition speed-up technique: Feasibility study1,” Radiology 245, 863871 (2007).
http://dx.doi.org/10.1148/radiol.2453061701
31.
31.R. Manka, V. Vitanis, P. Boesiger, A. J. Flammer, S. Plein, and S. Kozerke, “Clinical feasibility of accelerated, high spatial resolution myocardial perfusion imaging,” JACC: Cardiovasc. Imaging 3, 710717 (2010).
http://dx.doi.org/10.1016/j.jcmg.2010.03.009
32.
32.K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, “SENSE: Sensitivity encoding for fast MRI,” Magn. Reson. Med. 42, 952962 (1999).
http://dx.doi.org/10.1002/(SICI)1522-2594(199911)42:5¡952::AID-MRM16¿3.0.CO;2-S
33.
33.Y. Huisu, K. Kyung Sang, D. Kim, Y. Bresler, and Y. Jong Chul, “Motion adaptive patch-based low-rank approach for compressed sensing cardiac cine MRI,” IEEE Trans. Med. Imaging 33, 20692085 (2014).
http://dx.doi.org/10.1109/tmi.2014.2330426
34.
34.R. Chartrand, “Exact reconstruction of sparse signals via nonconvex minimization,” IEEE Signal Process. Lett. 14, 707710 (2007).
http://dx.doi.org/10.1109/LSP.2007.898300
35.
35.X. Chen, M. Salerno, Y. Yang, and F. H. Epstein, “Motion-compensated compressed sensing for dynamic contrast-enhanced MRI using regional spatiotemporal sparsity and region tracking: Block low-rank sparsity with motion-guidance (BLOSM),” Magn. Reson. Med. 72, 10281038 (2014).
http://dx.doi.org/10.1002/mrm.25018
36.
36.S. G. Lingala, E. DiBella, and M. Jacob, “Deformation corrected compressed sensing (DC-CS): A novel framework for accelerated dynamic MRI,” IEEE Trans. Med. Imaging 34, 7285 (2015).
http://dx.doi.org/10.1109/TMI.2014.2343953
37.
37.F. Crete, T. Dolmiere, P. Ladret, and M. Nicolas, “The blur effect: Perception and estimation with a new no-reference perceptual blur metric,” Proc. SPIE 6492, 64920I (2007).
http://dx.doi.org/10.1117/12.702790
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/42/8/10.1118/1.4926777
Loading
/content/aapm/journal/medphys/42/8/10.1118/1.4926777
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/42/8/10.1118/1.4926777
2015-07-20
2016-09-26

Abstract

To improve rank constrained reconstructions for undersampled multi-image MRI acquisitions.

Motivated by the recent developments in low-rank matrix completion theory and its applicability to rapid dynamic MRI, a new reordering-based rank constrained reconstruction of undersampled multi-image data that uses prior image information is proposed. Instead of directly minimizing the nuclear norm of a matrix of estimated images, the nuclear norm of matrix values is minimized. The reordering is based on the prior image estimates. The method is tested on brain diffusion imaging data and dynamic contrast enhanced myocardial perfusion data.

Good quality images from data undersampled by a factor of three for diffusion imaging and by a factor of 3.5 for dynamic cardiac perfusion imaging with respiratory motion were obtained. Reordering gave visually improved image quality over standard nuclear norm minimization reconstructions. Root mean squared errors with respect to ground truth images were improved by ∼18% and ∼16% with reordering for diffusion and perfusion applications, respectively.

The reordered low-rank constraint is a way to inject prior image information that offers improvements over a standard low-rank constraint for undersampled multi-image MRI reconstructions.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/42/8/1.4926777.html;jsessionid=nIileEz-MvxjyMBw8wjRnG1y.x-aip-live-03?itemId=/content/aapm/journal/medphys/42/8/10.1118/1.4926777&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/42/8/10.1118/1.4926777&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/42/8/10.1118/1.4926777'
Right1,Right2,Right3,