Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.O. Chiewitz and G. Hevesy, “Radioactive indicators in the study of phosphorous metabolism in rats,” Nature 136, 754755 (1935).
2.G. Mariani and H. W. Strauss, “Positron emission and single-photon emission imaging: Synergy rather than competition,” Eur. J. Nucl. Med. Mol. Imaging 38, 11891190 (2011).
3.G. Mariani, L. Bruselli, T. Kuwert, E. E. Kim, A. Flotats, O. Israel, M. Dondi, and N. Watanabe, “A review on the clinical uses of SPECT/CT,” Eur. J. Nucl. Med. Mol. Imaging 37, 19591985 (2010).
4.A. K. Paul and H. A. Nabi, “Gated myocardial perfusion SPECT: Basic principles, technical aspects, and clinical applications,” J. Nucl. Med. Technol. 32, 179187 (2004).
5.M. Horger and R. Bares, “The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease,” Semin. Nucl. Med. 36, 286294 (2006).
6.D. J. Kwekkeboom, H. van Urk, B. K. Pauw, S. W. Lamberts, P. P. Kooij, R. P. Hoogma, and E. P. Krenning, “Octreotide scintigraphy for the detection of paragangliomas,” J. Nucl. Med. 34, 873878 (1993).
7.G. L. Zeng, J. R. Galt, M. N. Wernick, R. A. Mintzer, and J. N. Aarsvold, “Single-photon emission computed tomography,” in Emission Tomography: The Fundamentals of PET and SPECT (Elsevier Academic, San Diego, London, 2004), Chap. 7, pp. 127151.
8.S. M. Lim, A. Katsifis, V. L. Villemagne, R. Best, G. Jones, M. Saling, J. Bradshaw, J. Merory, M. Woodward, M. Hopwood, and C. C. Rowe, “The 18F-FDG PET cingulate island sign and comparison to 123I-beta-CIT SPECT for diagnosis of dementia with Lewy bodies,” J. Nucl. Med. 50, 16381645 (2009).
9.M. Ichise, H. Toyama, L. Fornazzari, J. R. Ballinger, and J. C. Kirsh, “Iodine-123-IBZM dopamine D2 receptor and technetium-99m-HMPAO brain perfusion SPECT in the evaluation of patients with and subjects at risk for Huntington’s disease,” J. Nucl. Med. 34, 12741281 (1993).
10.S. R. Meikle, P. Kench, M. Kassiou, and R. B. Banati, “Small animal SPECT and its place in the matrix of molecular imaging technologies,” Phys. Med. Biol. 50, R45R61 (2005).
11.S. Moore, K. Kouris, and I. Cullum, “Collimator design for single photon emission tomography,” Eur. J. Nucl. Med. 19, 138150 (1992).
12.D. L. Gunter, “Collimator design for nuclear medicine,” in Emission Tomography: The Fundamentals of PET and SPECT (Elsevier Academic, San Diego, London, 2004), Chap. 8, pp. 153168.
13.S. R. Meikle, P. L. Kench, and J. Lin, “Design considerations of small-animal SPECT cameras,” in Molecular Imaging of Small Animals–Instrumentation and Applications, edited by H. Zaidi (Springer, Geneva, Switzerland, 2014).
14.D. R. Schaart, H. T. van Dam, S. Seifert, R. Vinke, P. Dendooven, H. Löhner, and F. J. Beekman, “A novel, SiPM-array-based, monolithic scintillator detector for PET,” Phys. Med. Biol. 54, 35013512 (2009).
15.M. Georgiou, G. Borghi, S. V. Spirou, G. Loudos, and D. R. Schaart, “First performance tests of a digital photon counter (DPC) array coupled to a CsI(Tl) crystal matrix for potential use in SPECT,” Phys. Med. Biol. 59, 24152430 (2014).
16.C. Bouckaert, S. Vandenberghe, and R. Van Holen, “Evaluation of a compact, high-resolution SPECT detector based on digital silicon photomultipliers,” Phys. Med. Biol. 59, 75217539 (2014).
17.H. B. Barber, H. H. Barrett, F. L. Augustine, W. J. Hamilton, B. A. Apotovsky, E. L. Dereniak, F. P. Doty, J. D. Eskin, J. P. Garcia, D. G. Marks, K. J. Matherson, J. M. Woolfenden, and E. T. Young, “Development of a 64 × 64 CdZnTe array and associated readout integrated circuit for use in nuclear medicine,” J. Electron. Mater. 26, 765772 (1997).
18.T. E. Peterson and L. R. Furenlid, “SPECT detectors: The Anger camera and beyond,” Phys. Med. Biol. 56, R145R182 (2011).
19.M. Rogulski, H. Barber, H. Barrett, R. Shoemaker, and J. Woolfenden, “Ultra-high-resolution brain SPECT imaging: Simulation results,” IEEE Trans. Nucl. Sci. 40, 11231129 (1993).
20.M. C. Goorden, M. C. M. Rentmeester, and F. J. Beekman, “Theoretical analysis of full-ring multi-pinhole brain SPECT,” Phys. Med. Biol. 54, 65936610 (2009).
21.R. Van Holen, B. Vandeghinste, K. Deprez, and S. Vandenberghe, “Design and performance of a compact and stationary microSPECT system,” Med. Phys. 40, 112501 (11pp.) (2013).
22.D. Meier, D. J. Wagenaar, S. Chen, J. Xu, J. Yu, and B. M. W. Tsui, “A SPECT camera for combined MRI and SPECT for small animals,” Nucl. Instrum. Methods Phys. Res., Sect. A 652, 731734 (2011).
23.M. J. Hamamura, S. Ha, W. W. Roeck, L. T. Muftuler, D. J. Wagenaar, D. Meier, B. E. Patt, and O. Nalcioglu, “Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition,” Phys. Med. Biol. 55, 15631575 (2010).
24.L. Cai, X. Lai, Z. Shen, C.-T. Chen, and L.-J. Meng, “MRC-SPECT: A sub- 500 μm resolution MR-compatible SPECT system for simultaneous dual-modality study of small animals,” Nucl. Instrum. Methods Phys. Res., Sect. A 734, 147151 (2014).
25.P. Busca, C. Fiorini, A. D. Butt, M. Occhipinti, R. Peloso, R. Quaglia, F. Schembari, P. Trigilio, G. Nemeth, P. Major, K. Erlandsson, and B. F. Hutton, “Simulation of the expected performance of INSERT: A new multi-modality SPECT/MRI system for preclinical and clinical imaging,” Nucl. Instrum. Methods Phys. Res., Sect. A 734, 141146 (2014).
26.K. Van Audenhaege, C. Vanhove, S. Vandenberghe, and R. Van Holen, “The evaluation of data completeness and image quality in multiplexing multi-pinhole SPECT,” IEEE Trans. Med. Imaging 34, 474486 (2014).
27.J. Lin, “On artifact-free projection overlaps in multi-pinhole tomographic imaging,” IEEE Trans. Med. Imaging 32, 22152229 (2013).
28.J. Lin, “An extension to artifact-free projection overlaps,” Med. Phys. 42, 21792193 (2015).
29.K. Vunckx, J. Nuyts, B. Vanbilloen, M. De Saint-hubert, D. Vanderghinste, D. Rattat, F. M. Mottaghy, and M. Defrise, “Optimized multipinhole design for mouse imaging,” IEEE Trans. Nucl. Sci. 56, 26962705 (2009).
30.S. T. Mahmood, K. Erlandsson, I. Cullum, and B. F. Hutton, “The potential for mixed multiplexed and non-multiplexed data to improve the reconstruction quality of a multi-slit-slat collimator SPECT system,” Phys. Med. Biol. 55, 22472268 (2010).
31.S. Mahmood, K. Erlandsson, I. Cullum, and B. Hutton, “Experimental results from a prototype slit-slat collimator with mixed multiplexed and non-multiplexed data,” Phys. Med. Biol. 56, 43114331 (2011).
32.D. W. Wilson, H. H. Barrett, and E. W. Clarkson, “Reconstruction of two- and three-dimensional images from synthetic-collimator data,” IEEE Trans. Med. Imaging 19, 412422 (2000).
33.S. Shokouhi, S. D. Metzler, D. W. Wilson, and T. E. Peterson, “Multi-pinhole collimator design for small-object imaging with SiliSPECT: A high-resolution SPECT,” Phys. Med. Biol. 54, 207225 (2009).
34.S. Shokouhi, D. W. Wilson, S. D. Metzler, and T. E. Peterson, “Evaluation of image reconstruction for mouse brain imaging with synthetic collimation from highly multiplexed SiliSPECT projections,” Phys. Med. Biol. 55, 51515168 (2010).
35.H. O. Anger, “Scintillation camera with multichannel collimators,” J. Nucl. Med. 5, 515531 (1964).
36.D. Gunter, K. Matthews, and C. Ordoñez, “The optimal design of non-parallel hole collimators,” in IEEE Nuclear Science Symposium Conference Record (IEEE, Seattle, WA, 1999), Vol. 3, pp. 13441348.
37.H. Wieczorek and A. Goedicke, “Analytical model for SPECT detector concepts,” IEEE Trans. Nucl. Sci. 53, 11021112 (2006).
38.R. L. Mather, “Gamma-ray collimator penetration and scattering effects,” J. Appl. Phys. 28, 12001207 (1957).
39.M. S. Gerber and D. W. Miller, “Parallel-hole collimator design,” J. Nucl. Med. 15, 724725 (1974).
40.R. A. Moyer, “A low-energy multihole converging collimator compared with a pinhole collimator,” J. Nucl. Med. 15, 5964 (1974).
41.A. R. Formiconi, “Geometrical response of multihole collimators,” Phys. Med. Biol. 43, 33593379 (1998).
42.M. Park, M. Kijewski, and S. Moore, “Effects of hole tapering on cone-beam collimation for brain SPECT imaging,” Nucl. Instrum. Methods Phys. Res., Sect. A 569, 188192 (2006).
43.R. M. Capote, N. Matela, R. C. Conceição, and P. Almeida, “Optimization of convergent collimators for pixelated SPECT systems,” Med. Phys. 40, 062501(13pp.) (2013).
44.G. Muehllehner, “A diverging collimator for gamma-ray imaging cameras,” J. Nucl. Med. 10, 197201 (1969).
45.L. Moerman, D. De Naeyer, P. Boon, and F. De Vos, “P-glycoprotein at the blood-brain barrier: Kinetic modeling of 11C-desmethylloperamide in mice using a 18F-FDG μPET scan to determine the input function,” Eur. J. Nucl. Med. Mol. Imaging Res. 1, 19 (2011).
46.K. Ogawa and M. Muraishi, “Feasibility study on an ultra-high-resolution SPECT with CdTe detectors,” IEEE Trans. Nucl. Sci. 57, 1724 (2010).
47.M. Smith, R. Jaszczak, and H. Wang, “Pinhole aperture design for 131I tumor imaging,” IEEE Trans. Nucl. Sci. 44, 11541160 (1997).
48.J. Lin and S. R. Meikle, “SPECT using asymmetric pinholes with truncated projections,” Phys. Med. Biol. 56, 41034118 (2011).
49.M. C. Goorden and F. J. Beekman, “High-resolution tomography of positron emitters with clustered pinhole SPECT,” Phys. Med. Biol. 55, 12651277 (2010).
50.D. Paix, “Pinhole imaging of gamma rays,” Phys. Med. Biol. 12, 489500 (1967).
51.S. D. Metzler, J. E. Bowsher, M. F. Smith, and R. J. Jaszczak, “Analytic determination of pinhole collimator sensitivity with penetration,” IEEE Trans. Med. Imaging 20, 730741 (2001).
52.R. Accorsi and S. D. Metzler, “Analytic determination of the resolution-equivalent effective diameter of a pinhole collimator,” IEEE Trans. Med. Imaging 23, 750763 (2004).
53.F. Van Der Have, B. Vastenhouw, R. M. Ramakers, W. Branderhorst, J. O. Krah, C. Ji, S. G. Staelens, and F. J. Beekman, “U-SPECT-II: An ultra-high-resolution device for molecular small-animal imaging,” J. Nucl. Med. 50, 599605 (2009).
54.B. W. Miller, L. R. Furenlid, S. K. Moore, H. B. Barber, V. V. Nagarkar, and H. H. Barrett, “System integration of FastSPECT III, a dedicated SPECT rodent-brain imager based on BazookaSPECT detector technology,” in IEEE Nuclear Science Symposium Conference Record (IEEE, Orlando, FL, 2009), pp. 40044008.
55.K. Lin, I.-T. Hsiao, C. Wietholt, Y. Chung, C. Chen, and Y. T, “Performance evaluation of an animal SPECT using modified NEMA standards,” J. Nucl. Med. 49, 402P (2008).
56.N. Schramm, G. Ebel, U. Engeland, T. Schurrat, M. Behe, and T. Behr, “High-resolution SPECT using multipinhole collimation,” IEEE Trans. Nucl. Sci. 50, 315320 (2003).
57.W. Chang, C. E. Ordonez, H. Liang, Y. Li, and J. Liu, “C-SPECT a clinical cardiac SPECT/CT platform: Design concepts and performance potential,” IEEE Trans. Nucl. Sci. 56, 26592671 (2009).
58.J. Dey, “Improvement of performance of cardiac SPECT camera using curved detectors with pinholes,” IEEE Trans. Nucl. Sci. 59, 334347 (2012).
59.T. Funk, D. Kirch, J. Koss, E. Botvinick, and B. Hasegawa, “A novel approach to multipinhole SPECT for myocardial perfusion imaging,” J. Nucl. Med. 47, 595602 (2006).
60.K. Van Audenhaege, S. Vandenberghe, K. Deprez, B. Vandeghinste, and R. Van Holen, “Design and simulation of a full-ring multi-lofthole collimator for brain SPECT,” Phys. Med. Biol. 58, 63176336 (2013).
61.P. Nillius and M. Danielsson, “Theoretical bounds and system design for multipinhole SPECT,” IEEE Trans. Med. Imaging 29, 13901400 (2010).
62.B. J. Min, Y. Choi, N.-Y. Lee, K. Lee, Y. B. Ahn, and J. Joung, “Design consideration of a multipinhole collimator with septa for ultra high-resolution silicon drift detector modules,” Nucl. Instrum. Methods Phys. Res., Sect. A 606, 755761 (2009).
63.F. Garibaldi, R. Accorsi, M. Cinti, E. Cisbani, S. Colilli, F. Cusanno, G. De Vincentis, A. Fortuna, R. Fratoni, B. Girolami, F. Ghio, F. Giuliani, M. Gricia, R. Lanza, A. Loizzo, S. Loizzo, M. Lucentini, S. Majewski, F. Santavenere, R. Pani, R. Pellegrini, A. Signore, F. Scopinaro, and P. Veneroni, “Small animal imaging by single photon emission using pinhole and coded aperture collimation,” IEEE Trans. Nucl. Sci. 52, 573579 (2005).
64.R. Accorsi, F. Gasparini, and R. C. Lanza, “Optimal coded aperture patterns for improved SNR in nuclear medicine imaging,” Nucl. Instrum. Methods Phys. Res., Sect. A 474, 273284 (2001).
65.S. R. Meikle, P. Kench, A. G. Weisenberger, R. Wojcik, M. F. Smith, S. Majewski, S. Eberl, R. R. Fulton, A. B. Rosenfeld, and M. J. Fulham, “A prototype coded aperture detector for small animal SPECT,” IEEE Nucl. Sci. Symp. Conf. Rec. 3, 15801584 (2001).
66.S. R. Meikle, R. Wojcik, A. G. Weisenberger, M. F. Smith, S. Majewski, P. Kench, S. Eberl, R. R. Fulton, M. Lerch, and A. B. Rosenfeld, “CoALA-SPECT: A coded aperture laboratory animal SPECT system for pre clinical imaging,” IEEE Nucl. Sci. Symp. Conf. Rec. 2, 10611065 (2002).
67.R. Accorsi, J. R. Novak, A. S. Ayan, and S. D. Metzler, “Derivation and validation of a sensitivity formula for slit-slat collimation,” IEEE Trans. Med. Imaging 27, 709722 (2008).
68.S. D. Metzler, R. Accorsi, A. S. Ayan, and R. J. Jaszczak, “Slit-slat and multi-slit-slat collimator design and experimentally acquired phantom images from a rotating prototype,” IEEE Trans. Nucl. Sci. 57, 125134 (2010).
69.G. L. Zeng, D. Gagnon, C. G. Matthews, J. A. Kolthammer, J. D. Radachy, and W. G. Hawkins, “Image reconstruction algorithm for a rotating slat collimator,” Med. Phys. 29, 14061412 (2002).
70.S. Vandenberghe, R. Van Holen, S. Staelens, and I. Lemahieu, “System characteristics of SPECT with a slat collimated strip detector,” Phys. Med. Biol. 51, 391405 (2006).
71.R. Van Holen, S. Vandenberghe, S. Staelens, and I. Lemahieu, “Comparing planar image quality of rotating slat and parallel hole collimation: Influence of system modeling,” Phys. Med. Biol. 53, 19892002 (2008).
72.R. Van Holen, “SPECT imaging with rotating slat collimation,” Ph.D. thesis, University Ghent, 2009.
73.L. Zhou, K. Vunckx, and J. Nuyts, “Parallel hole and rotating slat collimators: Comparative study using digital contrast phantoms,” IEEE Trans. Nucl. Sci. 60, 32823289 (2013).
74.R. Clack, P. Christian, M. Defrise, and A. E. Welch, “Image reconstruction for a novel SPECT system with rotating slant-hole collimators,” IEEE Nucl. Sci. Symp. Conf. Rec. 4, 19481952 (1994).
75.C. Liu, J. Xu, and B. M. W. Tsui, “Myocardial perfusion SPECT using a rotating multi-segment slant-hole collimator,” Med. Phys. 37, 16101618 (2010).
76.G. Bal, E. V. R. DiBella, G. T. Gullberg, and G. L. Zeng, “Cardiac imaging using a four-segment slant-hole collimator,” IEEE Trans. Nucl. Sci. 53, 26192627 (2006).
77.R. H. Moore, N. M. Alpert, and H. W. Strauss, “A variable angle slant-hole collimator,” J. Nucl. Med. 24, 6165 (1983).
78.C. Liu, J. Xu, and B. Tsui, “Development and evaluation of rotating multi-segment variable-angle slant-hole spect,” Soc. Nucl. Med. Annu. Meet. Abstr. 48, 161P (2007).
79.Z. Cao and B. Tsui, “An analytical reconstruction algorithm for multifocal converging-beam SPECT,” Phys. Med. Biol. 39, 281291 (1994).
80.P. C. Hawman and E. J. Haines, “The cardiofocal collimator: A variable-focus collimator for cardiac SPECT,” Phys. Med. Biol. 39, 439450 (1994).
81.M. A. Park, M. F. Kijewski, L. Horky, M. Keijzers, R. Keijzers, L. Kalfin, J. Crough, M. Goswami, and S. C. Moore, “Fabrication and calibration of a novel high-sensitivity collimator for brain SPECT imaging,” in Annual Meeting of the American Association of Physicists in Medicine (AAPM) (Medical Physics, Austin, TX, 2014), Vol. 41, presentation SU-C-9A-7.
82.S. C. Moore, M. F. Kijewski, M. Cervo, C. Mauceri, L. Horky, and M. A. Park, “Reconstruction of brain SPECT data from an ultra-short cone-beam collimator paired with a fan-beam collimator,” in Proceedings, Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Newport, RI (2015), paper 40.
83.P. Mi-Ae, S. C. Moore, and M. F. Kijewski, “System and method for performing Single Photon Emission Computed Tomography (SPECT) with a focal-length cone-beam collimation,” U.S. patent 20080302950 A1 (Dec. 11, 2008).
84.S. Cherry, J. Sorenson, and M. Phelps, Physics in Nuclear Medicine, 3rd ed. (Saunders, 1987), pp. 239240.
85.E. Keller, “Optimum dimensions of parallel-hole, multi-aperture collimators for gamma-ray cameras,” J. Nucl. Med. 9, 233235 (1968).
86.S. Moore, M. Kijewski, and G. E. Fakhri, “Collimator optimization for detection and quantitation tasks: Application to gallium-67 imaging,” IEEE Trans. Med. Imaging 24, 13471356 (2005).
87.M. Gieles, H. W. A. M. de Jong, and F. J. Beekman, “Monte Carlo simulations of pinhole imaging accelerated by kernel-based forced detection,” Phys. Med. Biol. 47, 18531867 (2002).
88.M. F. Smith and R. J. Jaszczak, “An analytic model of pinhole aperture penetration for 3D pinhole SPECT image reconstruction,” Phys. Med. Biol. 43, 761775 (1998).
89.F. Van Der Have and F. Beekman, “Penetration, scatter and sensitivity in channel micro-pinholes for SPECT: A Monte Carlo investigation,” IEEE Trans. Nucl. Sci. 53, 26352645 (2006).
90.K. Deprez, L. Pato, R. Van Holen, and S. Vandenberghe, “Characterization of a SPECT pinhole collimator for optimal detector usage (the lofthole),” Phys. Med. Biol. 58, 859885 (2013).
91.V. Bom, M. Goorden, and F. Beekman, “Comparison of pinhole collimator materials based on sensitivity equivalence,” Phys. Med. Biol. 56, 31993214 (2011).
92.R. Van Holen, S. Staelens, and S. Vandenberghe, “SPECT imaging of high energy isotopes and isotopes with high energy contaminants with rotating slat collimators,” Med. Phys. 36, 42574267 (2009).
93.S. Walrand, M. Hesse, R. Wojcik, R. Lhommel, and F. Jamar, “Optimal design of Anger camera for bremsstrahlung imaging: Monte Carlo evaluation,” Front. Oncol. 4, 149 (7pp.) (2014).
94.I. Perali, A. Celani, L. Bombelli, C. Fiorini, F. Camera, E. Clementel, S. Henrotin, G. Janssens, D. Prieels, F. Roellinghoff, J. Smeets, F. Stichelbaut, and F. V. Stappen, “Prompt gamma imaging of proton pencil beams at clinical dose rate,” Phys. Med. Biol. 59, 58495871 (2014).
95.S. Orlov, “Theory of three-dimensional reconstruction. II. The recovery operator,” Sov. Phys. - Crystallogr. 20, 429433 (1975).
96.H. K. Tuy, “An inversion formula for cone-beam reconstruction,” SIAM J. Appl. Math. 43, 546552 (1983).
97.B. D. Smith, “Image reconstruction from cone-beam projections: Necessary and sufficient conditions and reconstruction methods,” IEEE Trans. Med. Imaging 4, 1425 (1985).
98.J. Li, R. J. Jaszczak, A. Van Mullekom, C. Scarfone, K. L. Greer, and R. E. Coleman, “Half-cone beam collimation for triple-camera SPECT systems,” J. Nucl. Med. 37, 498502 (1996).
99.R. K. Rowe, J. N. Aarsvold, H. H. Barrett, J. C. Chen, W. P. Klein, B. A. Moore, I. W. Pang, D. D. Patton, and T. A. White, “A stationary hemispherical SPECT imager for three-dimensional brain imaging,” J. Nucl. Med. 34, 474480 (1993).
100.C. Stone, M. Smith, K. Greer, and R. Jaszczak, “A combined half-cone beam and parallel hole collimation system for SPECT brain imaging,” IEEE Trans. Nucl. Sci. 45, 12191224 (1998).
101.R. J. Jaszczak, J. Li, H. Wang, and R. E. Coleman, “Three-dimensional SPECT reconstruction of combined cone beam and parallel beam data,” Phys. Med. Biol. 37, 535548 (1992).
102.G. L. Zeng, “Revisit of combined parallel-beam/cone-beam or fan-beam/cone-beam imaging,” Med. Phys. 40, 100701 (5pp.) (2013).
103.G. T. Gullberg and G. L. Zeng, “Three-dimensional SPECT reconstruction of combined conebeam and fan-beam data acquired using a three-detector SPECT system,” in Proceedings, Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Springer, Aix-les-Bains, Savoie, France, 1995), p. 329.
104.M. Park, S. Moore, and M. Kijewski, “Brain SPECT with short focal-length cone-beam collimation,” Med. Phys. 32, 22362244 (2005).
105.R. J. Jaszczak, K. L. Greer, J. E. Bowsher, S. D. Metzler, R. Ter-Antonyan, and K. V. Bobkov, “Helical-path, half-cone-beam acquisition for SPECT brain imaging,” IEEE Nucl. Sci. Conf. Rec. 3, 18371841 (2006).
106.R. Ter-Antonyan, R. J. Jaszczak, J. E. Bowsher, K. L. Greer, and S. D. Metzler, “Brain SPECT simulation using half-cone-beam collimation and single-revolution helical-path acquisition,” IEEE Trans. Nucl. Sci. 54, 475479 (2007).
107.G. L. Zeng, “Helical SPECT using axially truncated data,” IEEE Trans. Nucl. Sci. 46, 21112118 (1999).
108.S. Metzler, K. Greer, and R. Jaszczak, “Helical pinhole SPECT for small-animal imaging: A method for addressing sampling completeness,” IEEE Trans. Nucl. Sci. 50, 15751583 (2003).
109.P. E. B. Vaissier, M. C. Goorden, B. Vastenhouw, F. van der Have, R. M. Ramakers, and F. J. Beekman, “Fast spiral SPECT with stationary γ-cameras and focusing pinholes,” J. Nucl. Med. 53, 12921299 (2012).
110.G. S. P. Mok, J. Yu, Y. Du, Y. Wang, and B. M. W. Tsui, “Evaluation of a multi-pinhole collimator for imaging small animals with different sizes,” Mol. Imaging Biol. 14, 6069 (2012).
111.C. Vanhove, M. Defrise, T. Lahoutte, and A. Bossuyt, “Three-pinhole collimator to improve axial spatial resolution and sensitivity in pinhole SPECT,” Eur. J. Nucl. Med. Mol. Imaging 35, 407415 (2008).
112.C. Lackas, N. Schramm, J. Hoppin, U. Engeland, A. Wirrwar, and H. Halling, “T-SPECT: A novel imaging technique for small animal research,” IEEE Trans. Nucl. Sci. 52, 181187 (2005).
113.S. D. Metzler, J. E. Bowsher, and R. J. Jaszczak, “Geometrical similarities of the Orlov and Tuy sampling criteria and a numerical algorithm for assessing sampling completeness,” IEEE Nucl. Sci. Conf. Rec. 50, 12411245 (2002).
114.R. J. Jaszczak, J. Li, H. Wang, M. R. Zalutsky, and R. E. Coleman, “Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT,” Phys. Med. Biol. 39, 425437 (1994).
115.C. Shannon, “Communication in the presence of noise,” Proc. IRE 37, 1021 (1949).
116.B. F. Hutton, “Angular sampling necessary for clinical SPECT,” J. Nucl. Med. 37, 19151916 (1996).
117.J. A. Bieszk and E. G. Hawman, “Evaluation of SPECT angular sampling effects: Continuous versus step-and-shoot acquisition,” J. Nucl. Med. 28, 13081314 (1987).
118.Z. Cao, L. E. Holder, and C. C. Chen, “Optimal number of views in 360 degrees SPECT imaging,” J. Nucl. Med. 37, 17401744 (1996).
119.N. Li and L.-J. Meng, “Adaptive angular sampling for SPECT imaging,” IEEE Trans. Nucl. Sci. 58, 22052218 (2011).
120.S. C. Moore, M. MacKnight, M.-A. Park, and R. E. Zimmerman, “Reduction of micro-SPECT streak artifacts from imperfect system modeling,” IEEE Nucl. Sci. Symp. Conf. Rec. 5, 33613363 (2007).
121.K. Vunckx, P. Suetens, and J. Nuyts, “Effect of overlapping projections on reconstruction image quality in multipinhole SPECT,” IEEE Trans. Med. Imaging 27, 972983 (2008).
122.K. Parnham, S. Chowdhury, J. Li, D. Wagenaar, and B. Patt, “Second-generation, tri-modality pre-clinical imaging system,” IEEE Nucl. Sci. Conf. Rec. 3, 18021805 (2006).
123.S. Deleye, R. Van Holen, J. Verhaeghe, S. Vandenberghe, S. Stroobants, and S. Staelens, “Performance evaluation of small-animal multipinhole μSPECT scanners for mouse imaging,” Eur. J. Nucl. Med. Mol. Imaging 40, 744758 (2013).
124.F. P. Difilippo and S. Patel, “Strategies to reduce artifacts and improve accuracy in multiplexed multi-pinhole small animal SPECT,” IEEE Nucl. Sci. Conf. Rec. 1, 31513154 (2009).
125.Z. Cao, G. Bal, R. Accorsi, and P. Acton, “Optimal number of pinholes in multi-pinhole SPECT for mouse brain imaging–a simulation study,” Phys. Med. Biol. 50, 46094624 (2005).
126.G. Bal, P. D. Acton, F. Jansen, and B. H. Hasegawa, “Revolving multipinhole SPECT for small animal imaging,” IEEE Nucl. Sci. Conf. Rec. 1, 55775584 (2008).
127.P. L. Kench, J. Lin, M. C. Gregoire, and S. R. Meikle, “An investigation of inconsistent projections and artefacts in multi-pinhole SPECT with axially aligned pinholes,” Phys. Med. Biol. 56, 74877503 (2011).
128.G. S. P. Mok, B. M. W. Tsui, and F. J. Beekman, “The effects of object activity distribution on multiplexing multi-pinhole SPECT,” Phys. Med. Biol. 56, 26352650 (2011).
129.O. V. Makarova, G. Yang, P. T. Amstutz, and C. M. Tang, “Fabrication of antiscatter grids and collimators for x-ray and gamma-ray imaging by lithography and electroforming,” Microsyst. Technol. 14, 16131619 (2008).
130.A. V. Ochoa, L. Ploux, R. Mastrippolito, Y. Charon, P. Lanièce, L. Pinot, and L. Valentin, “An original emission tomograph for in vivo brain imaging of small animals,” IEEE Trans. Nucl. Sci. 44, 15331537 (1997).
131.B. W. Miller, J. W. Moore, H. H. Barrett, T. Fryé, S. Adler, J. Sery, and L. R. Furenlid, “3D printing in x-ray and gamma-ray imaging: A novel method for fabricating high-density imaging apertures,” Nucl. Instrum. Methods Phys. Res., Sect. A 659, 262268 (2011).
132.K. Deprez, S. Vandenberghe, K. Van Audenhaege, J. Van Vaerenbergh, and R. Van Holen, “Rapid additive manufacturing of MR compatible multi-pinhole collimators with selective laser melting of tungsten powder,” Med. Phys. 40, 012501 (11pp.) (2013).
133.K. Deprez, “Preclinical SPECT imaging based on compact collimators and high resolution scintillation detectors,” Ph.D. thesis, University Ghent, 2014.
134.S. D. Metzler, R. Accorsi, J. R. Novak, A. S. Ayan, and R. J. Jaszczak, “On-axis sensitivity and resolution of a slit-slat collimator,” J. Nucl. Med. 47, 18841890 (2006).
135.A. Sabbir Ahmed, G. H. Kramer, W. Semmler, and J. Peter, “Performance study of a fan-beam collimator designed for a multi-modality small animal imaging device,” Nucl. Instrum. Methods Phys. Res., Sect. A 629, 368376 (2011).
136.G. Muehllehner, “Effect of resolution improvement on required count density in ECT imaging: A computer simulation,” Phys. Med. Biol. 30, 163173 (1985).
137.F. H. Fahey, B. A. Harkness, J. W. Keyes, M. T. Madsen, and V. Zito, “Sensitivity, resolution and image quality with a multi-head SPECT camera,” J. Nucl. Med. 33, 18591863 (1992).
138.M. T. Madsen, W. Chang, and R. D. Hichwa, “Spatial resolution and count density requirements in brain SPECT imaging,” Phys. Med. Biol 37, 16251636 (1992).
139.Y. H. Lau, B. F. Hutton, and F. J. Beekman, “Choice of collimator for cardiac SPET when resolution compensation is included in iterative reconstruction,” Eur. J. Nucl. Med. 28, 3947 (2001).
140.C. Kamphuis, F. Beekman, and B. Hutton, “Optimal collimator hole dimensions for half cone-beam brain SPECT,” in Proceedings, Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Springer, Egmond aan Zee, The Netherlands, 1999), pp. 271275.
141.S. J. McQuaid, S. Southekal, M. F. Kijewski, and S. C. Moore, “Joint optimization of collimator and reconstruction parameters in SPECT imaging for lesion quantification,” Phys. Med. Biol. 56, 69837000 (2011).
142.L. Zhou and G. Gindi, “Collimator optimization in SPECT based on a joint detection and localization task,” Phys. Med. Biol. 54, 44234437 (2009).
143.M. F. Smith, S. Majewski, and A. G. Weisenberger, “Optimizing pinhole and parallel hole collimation for scintimammography with compact pixellated detectors,” IEEE Trans. Nucl. Sci. 50, 321326 (2003).
144.A. L. Weinmann, C. B. Hruska, and M. K. O’Connor, “Design of optimal collimation for dedicated molecular breast imaging systems,” Med. Phys. 36, 845856 (2009).
145.C. Robert, G. Montémont, V. Rebuffel, L. Verger, and I. Buvat, “Optimization of a parallel hole collimator/CdZnTe gamma-camera architecture for scintimammography,” Med. Phys. 38, 18061819 (2011).
146.M. Rentmeester, F. van der Have, and F. Beekman, “Optimizing multi-pinhole SPECT geometries using an analytical model,” Phys. Med. Biol. 52, 25672581 (2007).
147.S. T. Mahmood, K. Erlandsson, I. Cullum, and B. F. Hutton, “Design of a novel slit-slat collimator system for SPECT imaging of the human brain,” Phys. Med. Biol. 54, 34333449 (2009).
148.S. Staelens, K. Vunckx, J. Debeenhouwer, F. Beekman, Y. Dasseler, J. Nuyts, and I. Lemahieu, “GATE simulations for optimization of pinhole imaging,” Nucl. Instrum. Methods Phys. Res., Sect. A 569, 359363 (2006).
149.B. M. W. Tsui, C. E. Metz, F. B. Atkins, S. J. Starr, and R. N. Beck, “A comparison of optimum detector spatial resolution in nuclear imaging based on statistical theory and observer performance,” Phys. Med. Biol. 23, 654676 (1978).
150.B. M. W. Tsui, “Letter,” Phys. Med. Biol. 23, 1203 (1978).
151.R. F. Wagner and D. G. Brown, “Unified SNR analysis of medical imaging systems,” Phys. Med. Biol. 30, 489518 (1985).
152.R. F. Wagner, “Decision theory and the detail signal-to-noise ratio of Otto Schade,” Photogr. Sci. Eng. 22, 4146 (1978).
153.P. Sharp, D. C. Barber, D. G. Brown, A. E. Burgess, C. E. Metz, K. J. Myers, C. J. Taylor, and R. F. Wagner, “Medical imaging - The assessment of image quality,” International Commission on Radiation Units and Measurement, Bethesda, MD, ICRU Report 54, 1996.
154.J. G. Ott, F. Becce, P. Monnin, S. Schmidt, F. O. Bochud, and F. R. Verdun, “Update on the non-prewhitening model observer in computed tomography for the assessment of the adaptive statistical and model-based iterative reconstruction algorithms,” Phys. Med. Biol. 59, 40474064 (2014).
155.R. D. Fiete, H. H. Barrett, W. E. Smith, and K. J. Myers, “Hotelling trace criterion and its correlation with human-observer performance,” J. Opt. Soc. Am. A 4, 945953 (1987).
156.H. H. Barrett, J. Yao, J. P. Rolland, and K. J. Myers, “Model observers for assessment of image quality,” Proc. Natl. Acad. Sci. U. S. A. 90, 97589765 (1993).
157.J. P. Rolland and H. H. Barrett, “Effect of random background inhomogeneity on observer detection performance,” J. Opt. Soc. Am. A 9, 649658 (1992).
158.M. P. Eckstein, C. K. Abbey, F. O. Bochud, J. L. Bartroff, and J. S. Whiting, “Effect of image compression in model and human performance,” Proc. SPIE 3663, 243252 (1999).
159.C. K. Abbey and H. H. Barrett, “Linear iterative reconstruction algorithms: Study of observer performance,” in Proceedings of the 14th International Conference on Information Processing in Medical Imaging (Institute of Physics, London, Edinburgh, 1995), pp. 6576.
160.C. K. Abbey and H. H. Barrett, “Human- and model-observer performance in ramp-spectrum noise: Effects of regularization and object variability,” J. Opt. Soc. Am. A 18, 473488 (2001).
161.H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley-VCH, Weinheim, 2003).
162.N. Fuin, S. Pedemonte, S. Arridge, S. Ourselin, and B. F. Hutton, “Efficient determination of the uncertainty for the optimization of SPECT system design: A subsampled fisher information matrix,” IEEE Trans. Med. Imaging 33, 618635 (2014).
163.L. Pato, S. Vandenberghe, B. Vandeghinste, and R. Van Holen, “Evaluation of Fisher Information Matrix approximation-based methods for fast assessment of image quality in pinhole SPECT,” IEEE Trans. Med. Imaging (published online).
164.L. Zhou, S. Kulkarni, B. Liu, and G. Gindi, “Strategies to jointly optimize SPECT collimator and reconstruction parameters for a detection task,” in IEEE International Symposium on Biomedical Imaging (IEEE, Boston, MA, 2009), pp. 394397.
165.G. Zeng and G. Gullberg, “A channelized-hotelling-trace collimator design method based on reconstruction rather than projections,” IEEE Trans. Nucl. Sci. 49, 21552158 (2002).
166.M. Defrise, A. Rezaei, and J. Nuyts, “Time-of-flight PET data determine the attenuation sinogram up to a constant,” Phys. Med. Biol. 57, 885899 (2012).
167.C. Vanhove, A. Andreyev, M. Defrise, J. Nuyts, and A. Bossuyt, “Resolution recovery in pinhole SPECT based on multi-ray projections: A phantom study,” Eur. J. Nucl. Med. Mol. Imaging 34, 170180 (2007).
168.L. Meng and N. Clinthorne, “A modified uniform Cramer-Rao bound for multiple pinhole aperture design,” IEEE Trans. Med. Imaging 23, 896902 (2004).
169.K. Vunckx, D. Bequé, M. Defrise, and J. Nuyts, “Single and multipinhole collimator design evaluation method for small animal SPECT,” IEEE Trans. Med. Imaging 27, 3646 (2008).
170.M.-W. Lee, W.-T. Lin, and Y.-C. Chen, “Design optimization of multi-pinhole micro-SPECT configurations by signal detection tasks and system performance evaluations for mouse cardiac imaging,” Phys. Med. Biol. 60, 473499 (2015).
171.E. Clarkson, M. A. Kupinski, H. H. Barrett, and L. Furenlid, “A task-based approach to adaptive and multimodality imaging: Computation techniques are proposed for figures-of-merit to establish feasibility and optimize use of multiple imaging systems for disease diagnosis and treatment-monitoring,” Proc. IEEE Inst. Electr. Electron. Eng. 96, 500511 (2008).
172.H. H. Barrett, L. R. Furenlid, M. Freed, J. Y. Hesterman, M. A. Kupinski, E. Clarkson, and M. K. Whitaker, “Adaptive SPECT,” IEEE Trans. Med. Imaging 27, 775788 (2008).
173.M. Freed, M. A. Kupinski, L. R. Furenlid, D. W. Wilson, and H. H. Barrett, “A prototype instrument for single pinhole small animal adaptive SPECT imaging,” Med. Phys. 35, 19121925 (2008).
174.R. Van Holen, J. W. Moore, E. W. Clarkson, L. R. Furenlid, and H. H. Barrett, “Design and validation of an adaptive SPECT system: AdaptiSPECT,” IEEE Nucl. Sci. Symp. Conf. Rec. 1, 25392544 (2010).
175.C. Chaix, J. W. Moore, R. Van Holen, H. H. Barrett, and L. R. Furenlid, “The AdaptiSPECT imaging aperture,” IEEE Nucl. Sci. Symp. Conf. Rec. 1, 35643567 (2012).
176.M. Rozler and W. Chang, “Collimator interchange system for adaptive cardiac imaging in C-SPECT,” IEEE Trans. Nucl. Sci. 58, 22262233 (2011).

Data & Media loading...


Article metrics loading...



In single photon emission computed tomography, the choice of the collimator has a major impact on the sensitivity and resolution of the system. Traditional parallel-hole and fan-beam collimators used in clinical practice, for example, have a relatively poor sensitivity and subcentimeter spatial resolution, while in small-animal imaging, pinhole collimators are used to obtain submillimeter resolution and multiple pinholes are often combined to increase sensitivity. This paper reviews methods for production, sensitivity maximization, and task-based optimization of collimation for both clinical and preclinical imaging applications. New opportunities for improved collimation are now arising primarily because of (i) new collimator-production techniques and (ii) detectors with improved intrinsic spatial resolution that have recently become available. These new technologies are expected to impact the design of collimators in the future. The authors also discuss concepts like septal penetration, high-resolution applications, multiplexing, sampling completeness, and adaptive systems, and the authors conclude with an example of an optimization study for a parallel-hole, fan-beam, cone-beam, and multiple-pinhole collimator for different applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd