Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/42/8/10.1118/1.4927061
1.
1.O. Chiewitz and G. Hevesy, “Radioactive indicators in the study of phosphorous metabolism in rats,” Nature 136, 754755 (1935).
http://dx.doi.org/10.1038/136754a0
2.
2.G. Mariani and H. W. Strauss, “Positron emission and single-photon emission imaging: Synergy rather than competition,” Eur. J. Nucl. Med. Mol. Imaging 38, 11891190 (2011).
http://dx.doi.org/10.1007/s00259-011-1767-3
3.
3.G. Mariani, L. Bruselli, T. Kuwert, E. E. Kim, A. Flotats, O. Israel, M. Dondi, and N. Watanabe, “A review on the clinical uses of SPECT/CT,” Eur. J. Nucl. Med. Mol. Imaging 37, 19591985 (2010).
http://dx.doi.org/10.1007/s00259-010-1390-8
4.
4.A. K. Paul and H. A. Nabi, “Gated myocardial perfusion SPECT: Basic principles, technical aspects, and clinical applications,” J. Nucl. Med. Technol. 32, 179187 (2004).
5.
5.M. Horger and R. Bares, “The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease,” Semin. Nucl. Med. 36, 286294 (2006).
http://dx.doi.org/10.1053/j.semnuclmed.2006.05.001
6.
6.D. J. Kwekkeboom, H. van Urk, B. K. Pauw, S. W. Lamberts, P. P. Kooij, R. P. Hoogma, and E. P. Krenning, “Octreotide scintigraphy for the detection of paragangliomas,” J. Nucl. Med. 34, 873878 (1993).
7.
7.G. L. Zeng, J. R. Galt, M. N. Wernick, R. A. Mintzer, and J. N. Aarsvold, “Single-photon emission computed tomography,” in Emission Tomography: The Fundamentals of PET and SPECT (Elsevier Academic, San Diego, London, 2004), Chap. 7, pp. 127151.
8.
8.S. M. Lim, A. Katsifis, V. L. Villemagne, R. Best, G. Jones, M. Saling, J. Bradshaw, J. Merory, M. Woodward, M. Hopwood, and C. C. Rowe, “The 18F-FDG PET cingulate island sign and comparison to 123I-beta-CIT SPECT for diagnosis of dementia with Lewy bodies,” J. Nucl. Med. 50, 16381645 (2009).
http://dx.doi.org/10.2967/jnumed.109.065870
9.
9.M. Ichise, H. Toyama, L. Fornazzari, J. R. Ballinger, and J. C. Kirsh, “Iodine-123-IBZM dopamine D2 receptor and technetium-99m-HMPAO brain perfusion SPECT in the evaluation of patients with and subjects at risk for Huntington’s disease,” J. Nucl. Med. 34, 12741281 (1993).
10.
10.S. R. Meikle, P. Kench, M. Kassiou, and R. B. Banati, “Small animal SPECT and its place in the matrix of molecular imaging technologies,” Phys. Med. Biol. 50, R45R61 (2005).
http://dx.doi.org/10.1088/0031-9155/50/22/R01
11.
11.S. Moore, K. Kouris, and I. Cullum, “Collimator design for single photon emission tomography,” Eur. J. Nucl. Med. 19, 138150 (1992).
http://dx.doi.org/10.1007/bf00184130
12.
12.D. L. Gunter, “Collimator design for nuclear medicine,” in Emission Tomography: The Fundamentals of PET and SPECT (Elsevier Academic, San Diego, London, 2004), Chap. 8, pp. 153168.
13.
13.S. R. Meikle, P. L. Kench, and J. Lin, “Design considerations of small-animal SPECT cameras,” in Molecular Imaging of Small Animals–Instrumentation and Applications, edited by H. Zaidi (Springer, Geneva, Switzerland, 2014).
14.
14.D. R. Schaart, H. T. van Dam, S. Seifert, R. Vinke, P. Dendooven, H. Löhner, and F. J. Beekman, “A novel, SiPM-array-based, monolithic scintillator detector for PET,” Phys. Med. Biol. 54, 35013512 (2009).
http://dx.doi.org/10.1088/0031-9155/54/11/015
15.
15.M. Georgiou, G. Borghi, S. V. Spirou, G. Loudos, and D. R. Schaart, “First performance tests of a digital photon counter (DPC) array coupled to a CsI(Tl) crystal matrix for potential use in SPECT,” Phys. Med. Biol. 59, 24152430 (2014).
http://dx.doi.org/10.1088/0031-9155/59/10/2415
16.
16.C. Bouckaert, S. Vandenberghe, and R. Van Holen, “Evaluation of a compact, high-resolution SPECT detector based on digital silicon photomultipliers,” Phys. Med. Biol. 59, 75217539 (2014).
http://dx.doi.org/10.1088/0031-9155/59/23/7521
17.
17.H. B. Barber, H. H. Barrett, F. L. Augustine, W. J. Hamilton, B. A. Apotovsky, E. L. Dereniak, F. P. Doty, J. D. Eskin, J. P. Garcia, D. G. Marks, K. J. Matherson, J. M. Woolfenden, and E. T. Young, “Development of a 64 × 64 CdZnTe array and associated readout integrated circuit for use in nuclear medicine,” J. Electron. Mater. 26, 765772 (1997).
http://dx.doi.org/10.1007/s11664-997-0229-y
18.
18.T. E. Peterson and L. R. Furenlid, “SPECT detectors: The Anger camera and beyond,” Phys. Med. Biol. 56, R145R182 (2011).
http://dx.doi.org/10.1088/0031-9155/56/17/R01
19.
19.M. Rogulski, H. Barber, H. Barrett, R. Shoemaker, and J. Woolfenden, “Ultra-high-resolution brain SPECT imaging: Simulation results,” IEEE Trans. Nucl. Sci. 40, 11231129 (1993).
http://dx.doi.org/10.1109/23.256722
20.
20.M. C. Goorden, M. C. M. Rentmeester, and F. J. Beekman, “Theoretical analysis of full-ring multi-pinhole brain SPECT,” Phys. Med. Biol. 54, 65936610 (2009).
http://dx.doi.org/10.1088/0031-9155/54/21/010
21.
21.R. Van Holen, B. Vandeghinste, K. Deprez, and S. Vandenberghe, “Design and performance of a compact and stationary microSPECT system,” Med. Phys. 40, 112501 (11pp.) (2013).
http://dx.doi.org/10.1118/1.4822621
22.
22.D. Meier, D. J. Wagenaar, S. Chen, J. Xu, J. Yu, and B. M. W. Tsui, “A SPECT camera for combined MRI and SPECT for small animals,” Nucl. Instrum. Methods Phys. Res., Sect. A 652, 731734 (2011).
http://dx.doi.org/10.1016/j.nima.2010.09.116
23.
23.M. J. Hamamura, S. Ha, W. W. Roeck, L. T. Muftuler, D. J. Wagenaar, D. Meier, B. E. Patt, and O. Nalcioglu, “Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition,” Phys. Med. Biol. 55, 15631575 (2010).
http://dx.doi.org/10.1088/0031-9155/55/6/002
24.
24.L. Cai, X. Lai, Z. Shen, C.-T. Chen, and L.-J. Meng, “MRC-SPECT: A sub- 500 μm resolution MR-compatible SPECT system for simultaneous dual-modality study of small animals,” Nucl. Instrum. Methods Phys. Res., Sect. A 734, 147151 (2014).
http://dx.doi.org/10.1016/j.nima.2013.08.080
25.
25.P. Busca, C. Fiorini, A. D. Butt, M. Occhipinti, R. Peloso, R. Quaglia, F. Schembari, P. Trigilio, G. Nemeth, P. Major, K. Erlandsson, and B. F. Hutton, “Simulation of the expected performance of INSERT: A new multi-modality SPECT/MRI system for preclinical and clinical imaging,” Nucl. Instrum. Methods Phys. Res., Sect. A 734, 141146 (2014).
http://dx.doi.org/10.1016/j.nima.2013.08.064
26.
26.K. Van Audenhaege, C. Vanhove, S. Vandenberghe, and R. Van Holen, “The evaluation of data completeness and image quality in multiplexing multi-pinhole SPECT,” IEEE Trans. Med. Imaging 34, 474486 (2014).
http://dx.doi.org/10.1109/TMI.2014.2361051
27.
27.J. Lin, “On artifact-free projection overlaps in multi-pinhole tomographic imaging,” IEEE Trans. Med. Imaging 32, 22152229 (2013).
http://dx.doi.org/10.1109/TMI.2013.2277588
28.
28.J. Lin, “An extension to artifact-free projection overlaps,” Med. Phys. 42, 21792193 (2015).
http://dx.doi.org/10.1118/1.4915535
29.
29.K. Vunckx, J. Nuyts, B. Vanbilloen, M. De Saint-hubert, D. Vanderghinste, D. Rattat, F. M. Mottaghy, and M. Defrise, “Optimized multipinhole design for mouse imaging,” IEEE Trans. Nucl. Sci. 56, 26962705 (2009).
http://dx.doi.org/10.1109/TNS.2009.2030194
30.
30.S. T. Mahmood, K. Erlandsson, I. Cullum, and B. F. Hutton, “The potential for mixed multiplexed and non-multiplexed data to improve the reconstruction quality of a multi-slit-slat collimator SPECT system,” Phys. Med. Biol. 55, 22472268 (2010).
http://dx.doi.org/10.1088/0031-9155/55/8/009
31.
31.S. Mahmood, K. Erlandsson, I. Cullum, and B. Hutton, “Experimental results from a prototype slit-slat collimator with mixed multiplexed and non-multiplexed data,” Phys. Med. Biol. 56, 43114331 (2011).
http://dx.doi.org/10.1088/0031-9155/56/14/007
32.
32.D. W. Wilson, H. H. Barrett, and E. W. Clarkson, “Reconstruction of two- and three-dimensional images from synthetic-collimator data,” IEEE Trans. Med. Imaging 19, 412422 (2000).
http://dx.doi.org/10.1109/42.870252
33.
33.S. Shokouhi, S. D. Metzler, D. W. Wilson, and T. E. Peterson, “Multi-pinhole collimator design for small-object imaging with SiliSPECT: A high-resolution SPECT,” Phys. Med. Biol. 54, 207225 (2009).
http://dx.doi.org/10.1088/0031-9155/54/2/003
34.
34.S. Shokouhi, D. W. Wilson, S. D. Metzler, and T. E. Peterson, “Evaluation of image reconstruction for mouse brain imaging with synthetic collimation from highly multiplexed SiliSPECT projections,” Phys. Med. Biol. 55, 51515168 (2010).
http://dx.doi.org/10.1088/0031-9155/55/17/017
35.
35.H. O. Anger, “Scintillation camera with multichannel collimators,” J. Nucl. Med. 5, 515531 (1964).
36.
36.D. Gunter, K. Matthews, and C. Ordoñez, “The optimal design of non-parallel hole collimators,” in IEEE Nuclear Science Symposium Conference Record (IEEE, Seattle, WA, 1999), Vol. 3, pp. 13441348.
37.
37.H. Wieczorek and A. Goedicke, “Analytical model for SPECT detector concepts,” IEEE Trans. Nucl. Sci. 53, 11021112 (2006).
http://dx.doi.org/10.1109/TNS.2006.874954
38.
38.R. L. Mather, “Gamma-ray collimator penetration and scattering effects,” J. Appl. Phys. 28, 12001207 (1957).
http://dx.doi.org/10.1063/1.1722607
39.
39.M. S. Gerber and D. W. Miller, “Parallel-hole collimator design,” J. Nucl. Med. 15, 724725 (1974).
40.
40.R. A. Moyer, “A low-energy multihole converging collimator compared with a pinhole collimator,” J. Nucl. Med. 15, 5964 (1974).
41.
41.A. R. Formiconi, “Geometrical response of multihole collimators,” Phys. Med. Biol. 43, 33593379 (1998).
http://dx.doi.org/10.1088/0031-9155/43/11/013
42.
42.M. Park, M. Kijewski, and S. Moore, “Effects of hole tapering on cone-beam collimation for brain SPECT imaging,” Nucl. Instrum. Methods Phys. Res., Sect. A 569, 188192 (2006).
http://dx.doi.org/10.1016/j.nima.2006.08.015
43.
43.R. M. Capote, N. Matela, R. C. Conceição, and P. Almeida, “Optimization of convergent collimators for pixelated SPECT systems,” Med. Phys. 40, 062501(13pp.) (2013).
http://dx.doi.org/10.1118/1.4804053
44.
44.G. Muehllehner, “A diverging collimator for gamma-ray imaging cameras,” J. Nucl. Med. 10, 197201 (1969).
45.
45.L. Moerman, D. De Naeyer, P. Boon, and F. De Vos, “P-glycoprotein at the blood-brain barrier: Kinetic modeling of 11C-desmethylloperamide in mice using a 18F-FDG μPET scan to determine the input function,” Eur. J. Nucl. Med. Mol. Imaging Res. 1, 19 (2011).
http://dx.doi.org/10.1186/2191-219X-1-12
46.
46.K. Ogawa and M. Muraishi, “Feasibility study on an ultra-high-resolution SPECT with CdTe detectors,” IEEE Trans. Nucl. Sci. 57, 1724 (2010).
http://dx.doi.org/10.1109/TNS.2009.2034460
47.
47.M. Smith, R. Jaszczak, and H. Wang, “Pinhole aperture design for 131I tumor imaging,” IEEE Trans. Nucl. Sci. 44, 11541160 (1997).
http://dx.doi.org/10.1109/23.596980
48.
48.J. Lin and S. R. Meikle, “SPECT using asymmetric pinholes with truncated projections,” Phys. Med. Biol. 56, 41034118 (2011).
http://dx.doi.org/10.1088/0031-9155/56/13/023
49.
49.M. C. Goorden and F. J. Beekman, “High-resolution tomography of positron emitters with clustered pinhole SPECT,” Phys. Med. Biol. 55, 12651277 (2010).
http://dx.doi.org/10.1088/0031-9155/55/5/001
50.
50.D. Paix, “Pinhole imaging of gamma rays,” Phys. Med. Biol. 12, 489500 (1967).
http://dx.doi.org/10.1088/0031-9155/12/4/004
51.
51.S. D. Metzler, J. E. Bowsher, M. F. Smith, and R. J. Jaszczak, “Analytic determination of pinhole collimator sensitivity with penetration,” IEEE Trans. Med. Imaging 20, 730741 (2001).
http://dx.doi.org/10.1109/42.938241
52.
52.R. Accorsi and S. D. Metzler, “Analytic determination of the resolution-equivalent effective diameter of a pinhole collimator,” IEEE Trans. Med. Imaging 23, 750763 (2004).
http://dx.doi.org/10.1109/TMI.2004.826951
53.
53.F. Van Der Have, B. Vastenhouw, R. M. Ramakers, W. Branderhorst, J. O. Krah, C. Ji, S. G. Staelens, and F. J. Beekman, “U-SPECT-II: An ultra-high-resolution device for molecular small-animal imaging,” J. Nucl. Med. 50, 599605 (2009).
http://dx.doi.org/10.2967/jnumed.108.056606
54.
54.B. W. Miller, L. R. Furenlid, S. K. Moore, H. B. Barber, V. V. Nagarkar, and H. H. Barrett, “System integration of FastSPECT III, a dedicated SPECT rodent-brain imager based on BazookaSPECT detector technology,” in IEEE Nuclear Science Symposium Conference Record (IEEE, Orlando, FL, 2009), pp. 40044008.
55.
55.K. Lin, I.-T. Hsiao, C. Wietholt, Y. Chung, C. Chen, and Y. T, “Performance evaluation of an animal SPECT using modified NEMA standards,” J. Nucl. Med. 49, 402P (2008).
56.
56.N. Schramm, G. Ebel, U. Engeland, T. Schurrat, M. Behe, and T. Behr, “High-resolution SPECT using multipinhole collimation,” IEEE Trans. Nucl. Sci. 50, 315320 (2003).
http://dx.doi.org/10.1109/TNS.2003.812437
57.
57.W. Chang, C. E. Ordonez, H. Liang, Y. Li, and J. Liu, “C-SPECT a clinical cardiac SPECT/CT platform: Design concepts and performance potential,” IEEE Trans. Nucl. Sci. 56, 26592671 (2009).
http://dx.doi.org/10.1109/TNS.2009.2028138
58.
58.J. Dey, “Improvement of performance of cardiac SPECT camera using curved detectors with pinholes,” IEEE Trans. Nucl. Sci. 59, 334347 (2012).
http://dx.doi.org/10.1109/TNS.2011.2182660
59.
59.T. Funk, D. Kirch, J. Koss, E. Botvinick, and B. Hasegawa, “A novel approach to multipinhole SPECT for myocardial perfusion imaging,” J. Nucl. Med. 47, 595602 (2006).
60.
60.K. Van Audenhaege, S. Vandenberghe, K. Deprez, B. Vandeghinste, and R. Van Holen, “Design and simulation of a full-ring multi-lofthole collimator for brain SPECT,” Phys. Med. Biol. 58, 63176336 (2013).
http://dx.doi.org/10.1088/0031-9155/58/18/6317
61.
61.P. Nillius and M. Danielsson, “Theoretical bounds and system design for multipinhole SPECT,” IEEE Trans. Med. Imaging 29, 13901400 (2010).
http://dx.doi.org/10.1109/TMI.2010.2047113
62.
62.B. J. Min, Y. Choi, N.-Y. Lee, K. Lee, Y. B. Ahn, and J. Joung, “Design consideration of a multipinhole collimator with septa for ultra high-resolution silicon drift detector modules,” Nucl. Instrum. Methods Phys. Res., Sect. A 606, 755761 (2009).
http://dx.doi.org/10.1016/j.nima.2009.05.019
63.
63.F. Garibaldi, R. Accorsi, M. Cinti, E. Cisbani, S. Colilli, F. Cusanno, G. De Vincentis, A. Fortuna, R. Fratoni, B. Girolami, F. Ghio, F. Giuliani, M. Gricia, R. Lanza, A. Loizzo, S. Loizzo, M. Lucentini, S. Majewski, F. Santavenere, R. Pani, R. Pellegrini, A. Signore, F. Scopinaro, and P. Veneroni, “Small animal imaging by single photon emission using pinhole and coded aperture collimation,” IEEE Trans. Nucl. Sci. 52, 573579 (2005).
http://dx.doi.org/10.1109/TNS.2005.851428
64.
64.R. Accorsi, F. Gasparini, and R. C. Lanza, “Optimal coded aperture patterns for improved SNR in nuclear medicine imaging,” Nucl. Instrum. Methods Phys. Res., Sect. A 474, 273284 (2001).
http://dx.doi.org/10.1016/S0168-9002(01)01326-2
65.
65.S. R. Meikle, P. Kench, A. G. Weisenberger, R. Wojcik, M. F. Smith, S. Majewski, S. Eberl, R. R. Fulton, A. B. Rosenfeld, and M. J. Fulham, “A prototype coded aperture detector for small animal SPECT,” IEEE Nucl. Sci. Symp. Conf. Rec. 3, 15801584 (2001).
http://dx.doi.org/10.1109/NSSMIC.2001.1008641
66.
66.S. R. Meikle, R. Wojcik, A. G. Weisenberger, M. F. Smith, S. Majewski, P. Kench, S. Eberl, R. R. Fulton, M. Lerch, and A. B. Rosenfeld, “CoALA-SPECT: A coded aperture laboratory animal SPECT system for pre clinical imaging,” IEEE Nucl. Sci. Symp. Conf. Rec. 2, 10611065 (2002).
http://dx.doi.org/10.1109/NSSMIC.2002.1239505
67.
67.R. Accorsi, J. R. Novak, A. S. Ayan, and S. D. Metzler, “Derivation and validation of a sensitivity formula for slit-slat collimation,” IEEE Trans. Med. Imaging 27, 709722 (2008).
http://dx.doi.org/10.1109/TMI.2007.912395
68.
68.S. D. Metzler, R. Accorsi, A. S. Ayan, and R. J. Jaszczak, “Slit-slat and multi-slit-slat collimator design and experimentally acquired phantom images from a rotating prototype,” IEEE Trans. Nucl. Sci. 57, 125134 (2010).
http://dx.doi.org/10.1109/TNS.2009.2033989
69.
69.G. L. Zeng, D. Gagnon, C. G. Matthews, J. A. Kolthammer, J. D. Radachy, and W. G. Hawkins, “Image reconstruction algorithm for a rotating slat collimator,” Med. Phys. 29, 14061412 (2002).
http://dx.doi.org/10.1118/1.1485057
70.
70.S. Vandenberghe, R. Van Holen, S. Staelens, and I. Lemahieu, “System characteristics of SPECT with a slat collimated strip detector,” Phys. Med. Biol. 51, 391405 (2006).
http://dx.doi.org/10.1088/0031-9155/51/2/014
71.
71.R. Van Holen, S. Vandenberghe, S. Staelens, and I. Lemahieu, “Comparing planar image quality of rotating slat and parallel hole collimation: Influence of system modeling,” Phys. Med. Biol. 53, 19892002 (2008).
http://dx.doi.org/10.1088/0031-9155/53/7/013
72.
72.R. Van Holen, “SPECT imaging with rotating slat collimation,” Ph.D. thesis, University Ghent, 2009.
73.
73.L. Zhou, K. Vunckx, and J. Nuyts, “Parallel hole and rotating slat collimators: Comparative study using digital contrast phantoms,” IEEE Trans. Nucl. Sci. 60, 32823289 (2013).
http://dx.doi.org/10.1109/TNS.2013.2267815
74.
74.R. Clack, P. Christian, M. Defrise, and A. E. Welch, “Image reconstruction for a novel SPECT system with rotating slant-hole collimators,” IEEE Nucl. Sci. Symp. Conf. Rec. 4, 19481952 (1994).
http://dx.doi.org/10.1109/NSSMIC.1994.474685
75.
75.C. Liu, J. Xu, and B. M. W. Tsui, “Myocardial perfusion SPECT using a rotating multi-segment slant-hole collimator,” Med. Phys. 37, 16101618 (2010).
http://dx.doi.org/10.1118/1.3310386
76.
76.G. Bal, E. V. R. DiBella, G. T. Gullberg, and G. L. Zeng, “Cardiac imaging using a four-segment slant-hole collimator,” IEEE Trans. Nucl. Sci. 53, 26192627 (2006).
http://dx.doi.org/10.1109/TNS.2006.877152
77.
77.R. H. Moore, N. M. Alpert, and H. W. Strauss, “A variable angle slant-hole collimator,” J. Nucl. Med. 24, 6165 (1983).
78.
78.C. Liu, J. Xu, and B. Tsui, “Development and evaluation of rotating multi-segment variable-angle slant-hole spect,” Soc. Nucl. Med. Annu. Meet. Abstr. 48, 161P (2007).
79.
79.Z. Cao and B. Tsui, “An analytical reconstruction algorithm for multifocal converging-beam SPECT,” Phys. Med. Biol. 39, 281291 (1994).
http://dx.doi.org/10.1088/0031-9155/39/2/005
80.
80.P. C. Hawman and E. J. Haines, “The cardiofocal collimator: A variable-focus collimator for cardiac SPECT,” Phys. Med. Biol. 39, 439450 (1994).
http://dx.doi.org/10.1088/0031-9155/39/3/011
81.
81.M. A. Park, M. F. Kijewski, L. Horky, M. Keijzers, R. Keijzers, L. Kalfin, J. Crough, M. Goswami, and S. C. Moore, “Fabrication and calibration of a novel high-sensitivity collimator for brain SPECT imaging,” in Annual Meeting of the American Association of Physicists in Medicine (AAPM) (Medical Physics, Austin, TX, 2014), Vol. 41, presentation SU-C-9A-7.
82.
82.S. C. Moore, M. F. Kijewski, M. Cervo, C. Mauceri, L. Horky, and M. A. Park, “Reconstruction of brain SPECT data from an ultra-short cone-beam collimator paired with a fan-beam collimator,” in Proceedings, Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Newport, RI (2015), paper 40.
83.
83.P. Mi-Ae, S. C. Moore, and M. F. Kijewski, “System and method for performing Single Photon Emission Computed Tomography (SPECT) with a focal-length cone-beam collimation,” U.S. patent 20080302950 A1 (Dec. 11, 2008).
84.
84.S. Cherry, J. Sorenson, and M. Phelps, Physics in Nuclear Medicine, 3rd ed. (Saunders, 1987), pp. 239240.
85.
85.E. Keller, “Optimum dimensions of parallel-hole, multi-aperture collimators for gamma-ray cameras,” J. Nucl. Med. 9, 233235 (1968).
86.
86.S. Moore, M. Kijewski, and G. E. Fakhri, “Collimator optimization for detection and quantitation tasks: Application to gallium-67 imaging,” IEEE Trans. Med. Imaging 24, 13471356 (2005).
http://dx.doi.org/10.1109/TMI.2005.857211
87.
87.M. Gieles, H. W. A. M. de Jong, and F. J. Beekman, “Monte Carlo simulations of pinhole imaging accelerated by kernel-based forced detection,” Phys. Med. Biol. 47, 18531867 (2002).
http://dx.doi.org/10.1088/0031-9155/47/11/302
88.
88.M. F. Smith and R. J. Jaszczak, “An analytic model of pinhole aperture penetration for 3D pinhole SPECT image reconstruction,” Phys. Med. Biol. 43, 761775 (1998).
http://dx.doi.org/10.1088/0031-9155/43/4/006
89.
89.F. Van Der Have and F. Beekman, “Penetration, scatter and sensitivity in channel micro-pinholes for SPECT: A Monte Carlo investigation,” IEEE Trans. Nucl. Sci. 53, 26352645 (2006).
http://dx.doi.org/10.1109/TNS.2006.882739
90.
90.K. Deprez, L. Pato, R. Van Holen, and S. Vandenberghe, “Characterization of a SPECT pinhole collimator for optimal detector usage (the lofthole),” Phys. Med. Biol. 58, 859885 (2013).
http://dx.doi.org/10.1088/0031-9155/58/4/859
91.
91.V. Bom, M. Goorden, and F. Beekman, “Comparison of pinhole collimator materials based on sensitivity equivalence,” Phys. Med. Biol. 56, 31993214 (2011).
http://dx.doi.org/10.1088/0031-9155/56/11/003
92.
92.R. Van Holen, S. Staelens, and S. Vandenberghe, “SPECT imaging of high energy isotopes and isotopes with high energy contaminants with rotating slat collimators,” Med. Phys. 36, 42574267 (2009).
http://dx.doi.org/10.1118/1.3177312
93.
93.S. Walrand, M. Hesse, R. Wojcik, R. Lhommel, and F. Jamar, “Optimal design of Anger camera for bremsstrahlung imaging: Monte Carlo evaluation,” Front. Oncol. 4, 149 (7pp.) (2014).
http://dx.doi.org/10.3389/fonc.2014.00149
94.
94.I. Perali, A. Celani, L. Bombelli, C. Fiorini, F. Camera, E. Clementel, S. Henrotin, G. Janssens, D. Prieels, F. Roellinghoff, J. Smeets, F. Stichelbaut, and F. V. Stappen, “Prompt gamma imaging of proton pencil beams at clinical dose rate,” Phys. Med. Biol. 59, 58495871 (2014).
http://dx.doi.org/10.1088/0031-9155/59/19/5849
95.
95.S. Orlov, “Theory of three-dimensional reconstruction. II. The recovery operator,” Sov. Phys. - Crystallogr. 20, 429433 (1975).
96.
96.H. K. Tuy, “An inversion formula for cone-beam reconstruction,” SIAM J. Appl. Math. 43, 546552 (1983).
http://dx.doi.org/10.1137/0143035
97.
97.B. D. Smith, “Image reconstruction from cone-beam projections: Necessary and sufficient conditions and reconstruction methods,” IEEE Trans. Med. Imaging 4, 1425 (1985).
http://dx.doi.org/10.1109/TMI.1985.4307689
98.
98.J. Li, R. J. Jaszczak, A. Van Mullekom, C. Scarfone, K. L. Greer, and R. E. Coleman, “Half-cone beam collimation for triple-camera SPECT systems,” J. Nucl. Med. 37, 498502 (1996).
99.
99.R. K. Rowe, J. N. Aarsvold, H. H. Barrett, J. C. Chen, W. P. Klein, B. A. Moore, I. W. Pang, D. D. Patton, and T. A. White, “A stationary hemispherical SPECT imager for three-dimensional brain imaging,” J. Nucl. Med. 34, 474480 (1993).
100.
100.C. Stone, M. Smith, K. Greer, and R. Jaszczak, “A combined half-cone beam and parallel hole collimation system for SPECT brain imaging,” IEEE Trans. Nucl. Sci. 45, 12191224 (1998).
http://dx.doi.org/10.1109/23.682006
101.
101.R. J. Jaszczak, J. Li, H. Wang, and R. E. Coleman, “Three-dimensional SPECT reconstruction of combined cone beam and parallel beam data,” Phys. Med. Biol. 37, 535548 (1992).
http://dx.doi.org/10.1088/0031-9155/37/3/003
102.
102.G. L. Zeng, “Revisit of combined parallel-beam/cone-beam or fan-beam/cone-beam imaging,” Med. Phys. 40, 100701 (5pp.) (2013).
http://dx.doi.org/10.1118/1.4820373
103.
103.G. T. Gullberg and G. L. Zeng, “Three-dimensional SPECT reconstruction of combined conebeam and fan-beam data acquired using a three-detector SPECT system,” in Proceedings, Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Springer, Aix-les-Bains, Savoie, France, 1995), p. 329.
104.
104.M. Park, S. Moore, and M. Kijewski, “Brain SPECT with short focal-length cone-beam collimation,” Med. Phys. 32, 22362244 (2005).
http://dx.doi.org/10.1118/1.1929208
105.
105.R. J. Jaszczak, K. L. Greer, J. E. Bowsher, S. D. Metzler, R. Ter-Antonyan, and K. V. Bobkov, “Helical-path, half-cone-beam acquisition for SPECT brain imaging,” IEEE Nucl. Sci. Conf. Rec. 3, 18371841 (2006).
http://dx.doi.org/10.1109/NSSMIC.2006.354251
106.
106.R. Ter-Antonyan, R. J. Jaszczak, J. E. Bowsher, K. L. Greer, and S. D. Metzler, “Brain SPECT simulation using half-cone-beam collimation and single-revolution helical-path acquisition,” IEEE Trans. Nucl. Sci. 54, 475479 (2007).
http://dx.doi.org/10.1109/TNS.2007.897826
107.
107.G. L. Zeng, “Helical SPECT using axially truncated data,” IEEE Trans. Nucl. Sci. 46, 21112118 (1999).
http://dx.doi.org/10.1109/23.819290
108.
108.S. Metzler, K. Greer, and R. Jaszczak, “Helical pinhole SPECT for small-animal imaging: A method for addressing sampling completeness,” IEEE Trans. Nucl. Sci. 50, 15751583 (2003).
http://dx.doi.org/10.1109/TNS.2003.817948
109.
109.P. E. B. Vaissier, M. C. Goorden, B. Vastenhouw, F. van der Have, R. M. Ramakers, and F. J. Beekman, “Fast spiral SPECT with stationary γ-cameras and focusing pinholes,” J. Nucl. Med. 53, 12921299 (2012).
http://dx.doi.org/10.2967/jnumed.111.101899
110.
110.G. S. P. Mok, J. Yu, Y. Du, Y. Wang, and B. M. W. Tsui, “Evaluation of a multi-pinhole collimator for imaging small animals with different sizes,” Mol. Imaging Biol. 14, 6069 (2012).
http://dx.doi.org/10.1007/s11307-011-0472-8
111.
111.C. Vanhove, M. Defrise, T. Lahoutte, and A. Bossuyt, “Three-pinhole collimator to improve axial spatial resolution and sensitivity in pinhole SPECT,” Eur. J. Nucl. Med. Mol. Imaging 35, 407415 (2008).
http://dx.doi.org/10.1007/s00259-007-0579-y
112.
112.C. Lackas, N. Schramm, J. Hoppin, U. Engeland, A. Wirrwar, and H. Halling, “T-SPECT: A novel imaging technique for small animal research,” IEEE Trans. Nucl. Sci. 52, 181187 (2005).
http://dx.doi.org/10.1109/TNS.2005.843615
113.
113.S. D. Metzler, J. E. Bowsher, and R. J. Jaszczak, “Geometrical similarities of the Orlov and Tuy sampling criteria and a numerical algorithm for assessing sampling completeness,” IEEE Nucl. Sci. Conf. Rec. 50, 12411245 (2002).
http://dx.doi.org/10.1109/NSSMIC.2002.1239544
114.
114.R. J. Jaszczak, J. Li, H. Wang, M. R. Zalutsky, and R. E. Coleman, “Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT,” Phys. Med. Biol. 39, 425437 (1994).
http://dx.doi.org/10.1088/0031-9155/39/3/010
115.
115.C. Shannon, “Communication in the presence of noise,” Proc. IRE 37, 1021 (1949).
http://dx.doi.org/10.1109/JRPROC.1949.232969
116.
116.B. F. Hutton, “Angular sampling necessary for clinical SPECT,” J. Nucl. Med. 37, 19151916 (1996).
117.
117.J. A. Bieszk and E. G. Hawman, “Evaluation of SPECT angular sampling effects: Continuous versus step-and-shoot acquisition,” J. Nucl. Med. 28, 13081314 (1987).
118.
118.Z. Cao, L. E. Holder, and C. C. Chen, “Optimal number of views in 360 degrees SPECT imaging,” J. Nucl. Med. 37, 17401744 (1996).
119.
119.N. Li and L.-J. Meng, “Adaptive angular sampling for SPECT imaging,” IEEE Trans. Nucl. Sci. 58, 22052218 (2011).
http://dx.doi.org/10.1109/TNS.2011.2164935
120.
120.S. C. Moore, M. MacKnight, M.-A. Park, and R. E. Zimmerman, “Reduction of micro-SPECT streak artifacts from imperfect system modeling,” IEEE Nucl. Sci. Symp. Conf. Rec. 5, 33613363 (2007).
http://dx.doi.org/10.1109/NSSMIC.2007.4436852
121.
121.K. Vunckx, P. Suetens, and J. Nuyts, “Effect of overlapping projections on reconstruction image quality in multipinhole SPECT,” IEEE Trans. Med. Imaging 27, 972983 (2008).
http://dx.doi.org/10.1109/TMI.2008.922700
122.
122.K. Parnham, S. Chowdhury, J. Li, D. Wagenaar, and B. Patt, “Second-generation, tri-modality pre-clinical imaging system,” IEEE Nucl. Sci. Conf. Rec. 3, 18021805 (2006).
http://dx.doi.org/10.1109/NSSMIC.2006.354244
123.
123.S. Deleye, R. Van Holen, J. Verhaeghe, S. Vandenberghe, S. Stroobants, and S. Staelens, “Performance evaluation of small-animal multipinhole μSPECT scanners for mouse imaging,” Eur. J. Nucl. Med. Mol. Imaging 40, 744758 (2013).
http://dx.doi.org/10.1007/s00259-012-2326-2
124.
124.F. P. Difilippo and S. Patel, “Strategies to reduce artifacts and improve accuracy in multiplexed multi-pinhole small animal SPECT,” IEEE Nucl. Sci. Conf. Rec. 1, 31513154 (2009).
http://dx.doi.org/10.1109/NSSMIC.2009.5401689
125.
125.Z. Cao, G. Bal, R. Accorsi, and P. Acton, “Optimal number of pinholes in multi-pinhole SPECT for mouse brain imaging–a simulation study,” Phys. Med. Biol. 50, 46094624 (2005).
http://dx.doi.org/10.1088/0031-9155/50/19/013
126.
126.G. Bal, P. D. Acton, F. Jansen, and B. H. Hasegawa, “Revolving multipinhole SPECT for small animal imaging,” IEEE Nucl. Sci. Conf. Rec. 1, 55775584 (2008).
http://dx.doi.org/10.1109/NSSMIC.2008.4774511
127.
127.P. L. Kench, J. Lin, M. C. Gregoire, and S. R. Meikle, “An investigation of inconsistent projections and artefacts in multi-pinhole SPECT with axially aligned pinholes,” Phys. Med. Biol. 56, 74877503 (2011).
http://dx.doi.org/10.1088/0031-9155/56/23/010
128.
128.G. S. P. Mok, B. M. W. Tsui, and F. J. Beekman, “The effects of object activity distribution on multiplexing multi-pinhole SPECT,” Phys. Med. Biol. 56, 26352650 (2011).
http://dx.doi.org/10.1088/0031-9155/56/8/019
129.
129.O. V. Makarova, G. Yang, P. T. Amstutz, and C. M. Tang, “Fabrication of antiscatter grids and collimators for x-ray and gamma-ray imaging by lithography and electroforming,” Microsyst. Technol. 14, 16131619 (2008).
http://dx.doi.org/10.1007/s00542-008-0558-7
130.
130.A. V. Ochoa, L. Ploux, R. Mastrippolito, Y. Charon, P. Lanièce, L. Pinot, and L. Valentin, “An original emission tomograph for in vivo brain imaging of small animals,” IEEE Trans. Nucl. Sci. 44, 15331537 (1997).
http://dx.doi.org/10.1109/23.632717
131.
131.B. W. Miller, J. W. Moore, H. H. Barrett, T. Fryé, S. Adler, J. Sery, and L. R. Furenlid, “3D printing in x-ray and gamma-ray imaging: A novel method for fabricating high-density imaging apertures,” Nucl. Instrum. Methods Phys. Res., Sect. A 659, 262268 (2011).
http://dx.doi.org/10.1016/j.nima.2011.08.051
132.
132.K. Deprez, S. Vandenberghe, K. Van Audenhaege, J. Van Vaerenbergh, and R. Van Holen, “Rapid additive manufacturing of MR compatible multi-pinhole collimators with selective laser melting of tungsten powder,” Med. Phys. 40, 012501 (11pp.) (2013).
http://dx.doi.org/10.1118/1.4769122
133.
133.K. Deprez, “Preclinical SPECT imaging based on compact collimators and high resolution scintillation detectors,” Ph.D. thesis, University Ghent, 2014.
134.
134.S. D. Metzler, R. Accorsi, J. R. Novak, A. S. Ayan, and R. J. Jaszczak, “On-axis sensitivity and resolution of a slit-slat collimator,” J. Nucl. Med. 47, 18841890 (2006).
135.
135.A. Sabbir Ahmed, G. H. Kramer, W. Semmler, and J. Peter, “Performance study of a fan-beam collimator designed for a multi-modality small animal imaging device,” Nucl. Instrum. Methods Phys. Res., Sect. A 629, 368376 (2011).
http://dx.doi.org/10.1016/j.nima.2010.11.102
136.
136.G. Muehllehner, “Effect of resolution improvement on required count density in ECT imaging: A computer simulation,” Phys. Med. Biol. 30, 163173 (1985).
http://dx.doi.org/10.1088/0031-9155/30/2/005
137.
137.F. H. Fahey, B. A. Harkness, J. W. Keyes, M. T. Madsen, and V. Zito, “Sensitivity, resolution and image quality with a multi-head SPECT camera,” J. Nucl. Med. 33, 18591863 (1992).
138.
138.M. T. Madsen, W. Chang, and R. D. Hichwa, “Spatial resolution and count density requirements in brain SPECT imaging,” Phys. Med. Biol 37, 16251636 (1992).
http://dx.doi.org/10.1088/0031-9155/37/8/001
139.
139.Y. H. Lau, B. F. Hutton, and F. J. Beekman, “Choice of collimator for cardiac SPET when resolution compensation is included in iterative reconstruction,” Eur. J. Nucl. Med. 28, 3947 (2001).
http://dx.doi.org/10.1007/s002590000387
140.
140.C. Kamphuis, F. Beekman, and B. Hutton, “Optimal collimator hole dimensions for half cone-beam brain SPECT,” in Proceedings, Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Springer, Egmond aan Zee, The Netherlands, 1999), pp. 271275.
141.
141.S. J. McQuaid, S. Southekal, M. F. Kijewski, and S. C. Moore, “Joint optimization of collimator and reconstruction parameters in SPECT imaging for lesion quantification,” Phys. Med. Biol. 56, 69837000 (2011).
http://dx.doi.org/10.1088/0031-9155/56/21/014
142.
142.L. Zhou and G. Gindi, “Collimator optimization in SPECT based on a joint detection and localization task,” Phys. Med. Biol. 54, 44234437 (2009).
http://dx.doi.org/10.1088/0031-9155/54/14/005
143.
143.M. F. Smith, S. Majewski, and A. G. Weisenberger, “Optimizing pinhole and parallel hole collimation for scintimammography with compact pixellated detectors,” IEEE Trans. Nucl. Sci. 50, 321326 (2003).
http://dx.doi.org/10.1109/TNS.2003.812436
144.
144.A. L. Weinmann, C. B. Hruska, and M. K. O’Connor, “Design of optimal collimation for dedicated molecular breast imaging systems,” Med. Phys. 36, 845856 (2009).
http://dx.doi.org/10.1118/1.3077119
145.
145.C. Robert, G. Montémont, V. Rebuffel, L. Verger, and I. Buvat, “Optimization of a parallel hole collimator/CdZnTe gamma-camera architecture for scintimammography,” Med. Phys. 38, 18061819 (2011).
http://dx.doi.org/10.1118/1.3560423
146.
146.M. Rentmeester, F. van der Have, and F. Beekman, “Optimizing multi-pinhole SPECT geometries using an analytical model,” Phys. Med. Biol. 52, 25672581 (2007).
http://dx.doi.org/10.1088/0031-9155/52/9/016
147.
147.S. T. Mahmood, K. Erlandsson, I. Cullum, and B. F. Hutton, “Design of a novel slit-slat collimator system for SPECT imaging of the human brain,” Phys. Med. Biol. 54, 34333449 (2009).
http://dx.doi.org/10.1088/0031-9155/54/11/011
148.
148.S. Staelens, K. Vunckx, J. Debeenhouwer, F. Beekman, Y. Dasseler, J. Nuyts, and I. Lemahieu, “GATE simulations for optimization of pinhole imaging,” Nucl. Instrum. Methods Phys. Res., Sect. A 569, 359363 (2006).
http://dx.doi.org/10.1016/j.nima.2006.08.071
149.
149.B. M. W. Tsui, C. E. Metz, F. B. Atkins, S. J. Starr, and R. N. Beck, “A comparison of optimum detector spatial resolution in nuclear imaging based on statistical theory and observer performance,” Phys. Med. Biol. 23, 654676 (1978).
http://dx.doi.org/10.1088/0031-9155/23/4/008
150.
150.B. M. W. Tsui, “Letter,” Phys. Med. Biol. 23, 1203 (1978).
http://dx.doi.org/10.1088/0031-9155/23/6/421
151.
151.R. F. Wagner and D. G. Brown, “Unified SNR analysis of medical imaging systems,” Phys. Med. Biol. 30, 489518 (1985).
http://dx.doi.org/10.1088/0031-9155/30/6/001
152.
152.R. F. Wagner, “Decision theory and the detail signal-to-noise ratio of Otto Schade,” Photogr. Sci. Eng. 22, 4146 (1978).
153.
153.P. Sharp, D. C. Barber, D. G. Brown, A. E. Burgess, C. E. Metz, K. J. Myers, C. J. Taylor, and R. F. Wagner, “Medical imaging - The assessment of image quality,” International Commission on Radiation Units and Measurement, Bethesda, MD, ICRU Report 54, 1996.
154.
154.J. G. Ott, F. Becce, P. Monnin, S. Schmidt, F. O. Bochud, and F. R. Verdun, “Update on the non-prewhitening model observer in computed tomography for the assessment of the adaptive statistical and model-based iterative reconstruction algorithms,” Phys. Med. Biol. 59, 40474064 (2014).
http://dx.doi.org/10.1088/0031-9155/59/4/4047
155.
155.R. D. Fiete, H. H. Barrett, W. E. Smith, and K. J. Myers, “Hotelling trace criterion and its correlation with human-observer performance,” J. Opt. Soc. Am. A 4, 945953 (1987).
http://dx.doi.org/10.1364/JOSAA.4.000945
156.
156.H. H. Barrett, J. Yao, J. P. Rolland, and K. J. Myers, “Model observers for assessment of image quality,” Proc. Natl. Acad. Sci. U. S. A. 90, 97589765 (1993).
http://dx.doi.org/10.1073/pnas.90.21.9758
157.
157.J. P. Rolland and H. H. Barrett, “Effect of random background inhomogeneity on observer detection performance,” J. Opt. Soc. Am. A 9, 649658 (1992).
http://dx.doi.org/10.1364/JOSAA.9.000649
158.
158.M. P. Eckstein, C. K. Abbey, F. O. Bochud, J. L. Bartroff, and J. S. Whiting, “Effect of image compression in model and human performance,” Proc. SPIE 3663, 243252 (1999).
http://dx.doi.org/10.1117/12.349649
159.
159.C. K. Abbey and H. H. Barrett, “Linear iterative reconstruction algorithms: Study of observer performance,” in Proceedings of the 14th International Conference on Information Processing in Medical Imaging (Institute of Physics, London, Edinburgh, 1995), pp. 6576.
160.
160.C. K. Abbey and H. H. Barrett, “Human- and model-observer performance in ramp-spectrum noise: Effects of regularization and object variability,” J. Opt. Soc. Am. A 18, 473488 (2001).
http://dx.doi.org/10.1364/JOSAA.18.000473
161.
161.H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley-VCH, Weinheim, 2003).
162.
162.N. Fuin, S. Pedemonte, S. Arridge, S. Ourselin, and B. F. Hutton, “Efficient determination of the uncertainty for the optimization of SPECT system design: A subsampled fisher information matrix,” IEEE Trans. Med. Imaging 33, 618635 (2014).
http://dx.doi.org/10.1109/TMI.2013.2292805
163.
163.L. Pato, S. Vandenberghe, B. Vandeghinste, and R. Van Holen, “Evaluation of Fisher Information Matrix approximation-based methods for fast assessment of image quality in pinhole SPECT,” IEEE Trans. Med. Imaging (published online).
164.
164.L. Zhou, S. Kulkarni, B. Liu, and G. Gindi, “Strategies to jointly optimize SPECT collimator and reconstruction parameters for a detection task,” in IEEE International Symposium on Biomedical Imaging (IEEE, Boston, MA, 2009), pp. 394397.
165.
165.G. Zeng and G. Gullberg, “A channelized-hotelling-trace collimator design method based on reconstruction rather than projections,” IEEE Trans. Nucl. Sci. 49, 21552158 (2002).
http://dx.doi.org/10.1109/TNS.2002.803775
166.
166.M. Defrise, A. Rezaei, and J. Nuyts, “Time-of-flight PET data determine the attenuation sinogram up to a constant,” Phys. Med. Biol. 57, 885899 (2012).
http://dx.doi.org/10.1088/0031-9155/57/4/885
167.
167.C. Vanhove, A. Andreyev, M. Defrise, J. Nuyts, and A. Bossuyt, “Resolution recovery in pinhole SPECT based on multi-ray projections: A phantom study,” Eur. J. Nucl. Med. Mol. Imaging 34, 170180 (2007).
http://dx.doi.org/10.1007/s00259-006-0225-0
168.
168.L. Meng and N. Clinthorne, “A modified uniform Cramer-Rao bound for multiple pinhole aperture design,” IEEE Trans. Med. Imaging 23, 896902 (2004).
http://dx.doi.org/10.1109/TMI.2004.828356
169.
169.K. Vunckx, D. Bequé, M. Defrise, and J. Nuyts, “Single and multipinhole collimator design evaluation method for small animal SPECT,” IEEE Trans. Med. Imaging 27, 3646 (2008).
http://dx.doi.org/10.1109/TMI.2007.902802
170.
170.M.-W. Lee, W.-T. Lin, and Y.-C. Chen, “Design optimization of multi-pinhole micro-SPECT configurations by signal detection tasks and system performance evaluations for mouse cardiac imaging,” Phys. Med. Biol. 60, 473499 (2015).
http://dx.doi.org/10.1088/0031-9155/60/2/473
171.
171.E. Clarkson, M. A. Kupinski, H. H. Barrett, and L. Furenlid, “A task-based approach to adaptive and multimodality imaging: Computation techniques are proposed for figures-of-merit to establish feasibility and optimize use of multiple imaging systems for disease diagnosis and treatment-monitoring,” Proc. IEEE Inst. Electr. Electron. Eng. 96, 500511 (2008).
http://dx.doi.org/10.1109/JPROC.2007.913553
172.
172.H. H. Barrett, L. R. Furenlid, M. Freed, J. Y. Hesterman, M. A. Kupinski, E. Clarkson, and M. K. Whitaker, “Adaptive SPECT,” IEEE Trans. Med. Imaging 27, 775788 (2008).
http://dx.doi.org/10.1109/TMI.2007.913241
173.
173.M. Freed, M. A. Kupinski, L. R. Furenlid, D. W. Wilson, and H. H. Barrett, “A prototype instrument for single pinhole small animal adaptive SPECT imaging,” Med. Phys. 35, 19121925 (2008).
http://dx.doi.org/10.1118/1.2896072
174.
174.R. Van Holen, J. W. Moore, E. W. Clarkson, L. R. Furenlid, and H. H. Barrett, “Design and validation of an adaptive SPECT system: AdaptiSPECT,” IEEE Nucl. Sci. Symp. Conf. Rec. 1, 25392544 (2010).
http://dx.doi.org/10.1109/NSSMIC.2010.5874245
175.
175.C. Chaix, J. W. Moore, R. Van Holen, H. H. Barrett, and L. R. Furenlid, “The AdaptiSPECT imaging aperture,” IEEE Nucl. Sci. Symp. Conf. Rec. 1, 35643567 (2012).
http://dx.doi.org/10.1109/NSSMIC.2012.6551816
176.
176.M. Rozler and W. Chang, “Collimator interchange system for adaptive cardiac imaging in C-SPECT,” IEEE Trans. Nucl. Sci. 58, 22262233 (2011).
http://dx.doi.org/10.1109/TNS.2011.2163190
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/42/8/10.1118/1.4927061
Loading
/content/aapm/journal/medphys/42/8/10.1118/1.4927061
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/42/8/10.1118/1.4927061
2015-07-24
2016-09-27

Abstract

In single photon emission computed tomography, the choice of the collimator has a major impact on the sensitivity and resolution of the system. Traditional parallel-hole and fan-beam collimators used in clinical practice, for example, have a relatively poor sensitivity and subcentimeter spatial resolution, while in small-animal imaging, pinhole collimators are used to obtain submillimeter resolution and multiple pinholes are often combined to increase sensitivity. This paper reviews methods for production, sensitivity maximization, and task-based optimization of collimation for both clinical and preclinical imaging applications. New opportunities for improved collimation are now arising primarily because of (i) new collimator-production techniques and (ii) detectors with improved intrinsic spatial resolution that have recently become available. These new technologies are expected to impact the design of collimators in the future. The authors also discuss concepts like septal penetration, high-resolution applications, multiplexing, sampling completeness, and adaptive systems, and the authors conclude with an example of an optimization study for a parallel-hole, fan-beam, cone-beam, and multiple-pinhole collimator for different applications.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/42/8/1.4927061.html;jsessionid=Gm9CyXi_Y5AmJIEjCmogzUhz.x-aip-live-02?itemId=/content/aapm/journal/medphys/42/8/10.1118/1.4927061&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/42/8/10.1118/1.4927061&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/42/8/10.1118/1.4927061'
Right1,Right2,Right3,