Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/42/9/10.1118/1.4927567
1.
1.T. J. Kruser et al., “The impact of hybrid PET-CT scan on overall oncologic management, with a focus on radiotherapy planning: A prospective, blinded study,” Technol. Cancer Res. Treat. 8(2), 149158 (2009).
http://dx.doi.org/10.1177/153303460900800208
2.
2.K. Newbold, M. Partridge, G. Cook, S. A. Sohaib, E. Charles-Edwards, P. Rhys-Evans, and C. Nutting, “Advanced imaging applied to radiotherapy planning in head and neck cancer: A clinical review,” Br. J. Radiol. 79(943), 554561 (2006).
http://dx.doi.org/10.1259/bjr/48822193
3.
3.T. S. Hong, W. A. Tome, R. J. Chappell, and P. M. Harari, “Variations in target delineation for head and neck IMRT: An international multi-institutional study,” Int. J. Radiat. Oncol., Biol., Phys. 60(1), S157S158 (2004).
http://dx.doi.org/10.1016/j.ijrobp.2004.06.073
4.
4.W. Jeanneret-Sozzi, R. Moeckli, J. F. Valley, A. Zouhair, E. M. Ozsahin, and R. O. Mirimanoff, “The reasons for discrepancies in target volume delineation,” Strahlenther. Onkol. 182(8), 450457 (2006).
http://dx.doi.org/10.1007/s00066-006-1463-6
5.
5.V. Gregoire, P. Levendag, K. K. Ang, J. Bernier, M. Braaksma, V. Budach, and H. Reychler, “CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC, RTOG consensus guidelines,” Radiother. Oncol. 69(3), 227236 (2003).
http://dx.doi.org/10.1016/j.radonc.2003.09.011
6.
6.V. Gregoire, A. Eisbruch, M. Hamoir, and P. Levendag, “Proposal for the delineation of the nodal CTV in the node-positive and the post-operative neck,” Radiother. Oncol. 79(1), 1520 (2006).
http://dx.doi.org/10.1016/j.radonc.2006.03.009
7.
7.C. Sjoberg, M. Lundmark, C. Granberg, S. Johansson, A. Ahnesj, and A. Montelius, “Clinical evaluation of multi-atlas based segmentation of lymph node regions in head and neck and prostate cancer patients,” Radiat. Oncol. 8, 229235 (2013).
http://dx.doi.org/10.1186/1748-717x-8-229
8.
8.X. Geets, J. F. Daisne, S. Arcangeli, E. Coche, M. D. Poel, T. Duprez, and V. Gregoire, “Inter-observer variability in the delineation of pharyngo-laryngeal tumor, parotid glands and cervical spinal cord: Comparison between CT-scan and MRI,” Radiother. Oncol. 77(1), 2531 (2005).
http://dx.doi.org/10.1016/j.radonc.2005.04.010
9.
9.B. E. Nelms, W. A. Tom, G. Robinson, and J. Wheeler, “Variations in the contouring of organs at risk: Test case from a patient with oropharyngeal cancer,” Int. J. Radiat. Oncol., Biol., Phys. 82(1), 368378 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2010.10.019
10.
10.E. Weiss and C. F. Hess, “The impact of gross tumor volume (GTV) and clinical target volume (CTV) definition on the total accuracy in radiotherapy,” Strahlenther. Onkol. 179(1), 2130 (2003).
http://dx.doi.org/10.1007/s00066-003-0976-5
11.
11.A. V. Young, A. Wortham, I. Wernick, A. Evans, and R. D. Ennis, “Atlas-based segmentation improves consistency and decreases time required for contouring postoperative endometrial cancer nodal volumes,” Int. J. Radiat. Oncol., Biol., Phys. 79(3), 943947 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2010.04.063
12.
12.L. J. Stapleford, J. D. Lawson, C. Perkins, S. Edelman, L. Davis, M. W. McDonald, and T. Fox, “Evaluation of automatic atlas-based lymph node segmentation for head-and-neck cancer,” Int. J. Radiat. Oncol., Biol., Phys. 77(3), 959966 (2010).
http://dx.doi.org/10.1016/j.ijrobp.2009.09.023
13.
13.O. Commowick and G. Malandain, “Efficient selection of the most similar image in a database for critical structures segmentation,” in Medical Image Computing and Computer-Assisted Intervention MICCAI 2007 (Springer, Berlin, Heidelberg, 2007), pp. 203210.
14.
14.O. Commowick, V. Gregoire, and G. Malandain, “Atlas-based delineation of lymph node levels in head and neck computed tomography images,” Radiother. Oncol. 87(2), 281289 (2008).
http://dx.doi.org/10.1016/j.radonc.2008.01.018
15.
15.D. N. Teguh, P. C. Levendag, P. W. Voet, A. Al-Mamgani, X. Han, T. K. Wolf, and M. S. Hoogeman, “Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck,” Int. J. Radiat. Oncol., Biol., Phys. 81(4), 950957 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2010.07.009
16.
16.S. K. Warfield, K. H. Zou, and W. M. Wells, “Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation,” IEEE Trans. Med. Imaging 23(7), 903921 (2004).
http://dx.doi.org/10.1109/TMI.2004.828354
17.
17.X. Han, M. S. Hoogeman, P. C. Levendag, L. S. Hibbard, D. N. Teguh, P. Voet, and T. K. Wolf, “Atlas-based auto-segmentation of head and neck CT images,” in Medical Image Computing and Computer-Assisted Intervention MICCAI 2008 (Springer, Berlin, Heidelberg, 2008), pp. 434441.
18.
18.M. Jorge Cardoso, K. Leung, M. Modat, S. Keihaninejad, D. Cash, J. Barnes, and S. Ourselin, “STEPS: Similarity and truth estimation for propagated segmentations and its application to hippocampal segmentation and brain parcelation,” Med. Image Anal. 17(6), 671684 (2013).
http://dx.doi.org/10.1016/j.media.2013.02.006
19.
19.S. R. Irani, C. J. Stagg, J. M. Schott, C. R. Rosenthal, S. A. Schneider, P. Pettingill, and M. R. Johnson, “Faciobrachial dystonic seizures: The influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype,” Brain 136(10), 31513162 (2013).
http://dx.doi.org/10.1093/brain/awt212
20.
20.D. Ma, M. J. Cardoso, M. Modat, N. Powell, J. Wells, H. Holmes, and S. Ourselin, “Automatic structural parcellation of mouse brain MRI using multi-atlas label fusion,” PloS One 9(1), e86576 (2014).
http://dx.doi.org/10.1371/journal.pone.0086576
21.
21.X. Artaechevarria, A. Munoz-Barrutia, and C. Ortiz-de-Solrzano, “Combination strategies in multi-atlas image segmentation: Application to brain MR data,” IEEE Trans. Med. Imaging 28(8), 12661277 (2009).
http://dx.doi.org/10.1109/TMI.2009.2014372
22.
22.L. R. Dice, “Measures of the amount of ecologic association between species,” Ecology 26(3), 297302 (1945).
http://dx.doi.org/10.2307/1932409
23.
23.D. Genovesi, C. A. Perez, and A. Vinciguerra, A Guide for Delineation of Lymph Nodal Clinical Target Volume in Radiation Therapy (Springer, New York, NY, 2008), p. 173.
24.
24.M. Modat, G. R. Ridgway, Z. A. Taylor, M. Lehmann, J. Barnes, D. J. Hawkes, and S. Ourselin, “Fast free-form deformation using graphics processing units,” Comput. Methods Programs Biomed. 98(3), 278284 (2010).
http://dx.doi.org/10.1016/j.cmpb.2009.09.002
25.
25.S. Ourselin, A. Roche, G. Subsol, X. Pennec, and N. Ayache, “Reconstructing a 3D structure from serial histological sections,” Image Vision Comput. 19(1), 2531 (2001).
http://dx.doi.org/10.1016/S0262-8856(00)00052-4
26.
26.D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: Application to breast MR images,” IEEE Trans. Med. Imaging 18(8), 712721 (1999).
http://dx.doi.org/10.1109/42.796284
27.
27.P. Aljabar, R. A. Heckemann, A. Hammers, J. V. Hajnal, and D. Rueckert, “Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy,” Neuroimage 46(3), 726738 (2009).
http://dx.doi.org/10.1016/j.neuroimage.2009.02.018
28.
28.K. K. Leung, J. Barnes, G. R. Ridgway, J. W. Bartlett, M. J. Clarkson, K. Macdonald, and S. Ourselin, “Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer’s disease,” Neuroimage 51(4), 13451359 (2010).
http://dx.doi.org/10.1016/j.neuroimage.2010.03.018
29.
29.A. K. Hoang Duc, M. Modat, K. K. Leung, M. J. Cardoso, J. Barnes, and T. Kadir, “Using manifold learning for atlas selection in multi-atlas segmentation,” PloS One 8(8), e70059 (2013).
http://dx.doi.org/10.1371/journal.pone.0070059
30.
30.S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear embedding,” Science 290(5500), 23232326 (2000).
http://dx.doi.org/10.1126/science.290.5500.2323
31.
31.J. F. Daisne and A. Blumhofer, “Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: A clinical validation,” Radiat. Oncol. 8(1), 154165 (2013).
http://dx.doi.org/10.1186/1748-717X-8-154
32.
32.K. S. Chao, S. Bhide, H. Chen, J. Asper, S. Bush, G. Franklin, and L. Dong, “Reduce in variation and improve efficiency of target volume delineation by a computer-assisted system using a deformable image registration approach,” Int. J. Radiat. Oncol., Biol., Phys. 68(5), 15121521 (2007).
http://dx.doi.org/10.1016/j.ijrobp.2007.04.037
33.
33.T. Rohlfing, R. Brandt, R. Menzel, D. B. Russakoff, and C. R. Maurer, Jr., “Quo vadis, atlas-based segmentation?,” in Handbook of Biomedical Image Analysis (Springer, 2005), pp. 435486.
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/42/9/10.1118/1.4927567
Loading
/content/aapm/journal/medphys/42/9/10.1118/1.4927567
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/42/9/10.1118/1.4927567
2015-08-05
2016-09-26

Abstract

The aim of this study was to assess whether clinically acceptable segmentations of organs at risk (OARs) in head and neck cancer can be obtained automatically and efficiently using the novel “similarity and truth estimation for propagated segmentations” (STEPS) compared to the traditional “simultaneous truth and performance level estimation” (STAPLE) algorithm.

First, 6 OARs were contoured by 2 radiation oncologists in a dataset of 100 patients with head and neck cancer on planning computed tomography images. Each image in the dataset was then automatically segmented with STAPLE and STEPS using those manual contours. Dice similarity coefficient (DSC) was then used to compare the accuracy of these automatic methods. Second, in a blind experiment, three separate and distinct trained physicians graded manual and automatic segmentations into one of the following three grades: clinically acceptable as determined by universal delineation guidelines (grade A), reasonably acceptable for clinical practice upon manual editing (grade B), and not acceptable (grade C). Finally, STEPS segmentations graded B were selected and one of the physicians manually edited them to grade A. Editing time was recorded.

Significant improvements in DSC can be seen when using the STEPS algorithm on large structures such as the brainstem, spinal canal, and left/right parotid compared to the STAPLE algorithm (all < 0.001). In addition, across all three trained physicians, manual and STEPS segmentation grades were not significantly different for the brainstem, spinal canal, parotid (right/left), and optic chiasm (all > 0.100). In contrast, STEPS segmentation grades were lower for the eyes ( < 0.001). Across all OARs and all physicians, STEPS produced segmentations graded as well as manual contouring at a rate of 83%, giving a lower bound on this rate of 80% with 95% confidence. Reduction in manual interaction time was on average 61% and 93% when automatic segmentations did and did not, respectively, require manual editing.

The STEPS algorithm showed better performance than the STAPLE algorithm in segmenting OARs for radiotherapy of the head and neck. It can automatically produce clinically acceptable segmentation of OARs, with results as relevant as manual contouring for the brainstem, spinal canal, the parotids (left/right), and optic chiasm. A substantial reduction in manual labor was achieved when using STEPS even when manual editing was necessary.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/42/9/1.4927567.html;jsessionid=sCnDGciLW64B2dl_PItVq1OI.x-aip-live-02?itemId=/content/aapm/journal/medphys/42/9/10.1118/1.4927567&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/42/9/10.1118/1.4927567&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/42/9/10.1118/1.4927567'
Right1,Right2,Right3,