Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/43/1/10.1118/1.4937598
1.
1.H. Zaidi and X. G. Xu, “Computational anthropomorphic models of the human anatomy: The path to realistic Monte Carlo modeling in radiological sciences,” Annu. Rev. Biomed. Eng. 9, 471500 (2007).
http://dx.doi.org/10.1146/annurev.bioeng.9.060906.151934
2.
2.X. G. Xu, “An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: A review of the fifty-year history,” Phys. Med. Biol. 59, R233R302 (2014).
http://dx.doi.org/10.1088/0031-9155/59/18/R233
3.
3.H. Zaidi and B. M. Tsui, “Review of computational anthropomorphic anatomical and physiological models,” Proc. IEEE 97, 19381953 (2009).
http://dx.doi.org/10.1109/JPROC.2009.2032852
4.
4.X. G. Xu and K. F. Eckerman, Handbook of Anatomical Models for Radiation Dosimetry (CRC, Boca Raton, FL, 2010).
5.
5.T. Xie, G. Zhang, Y. Li, and Q. Liu, “Comparison of absorbed fractions of electrons and photons using three kinds of computational phantoms of rat,” Appl. Phys. Lett. 97, 033702 (2010).
http://dx.doi.org/10.1063/1.3462793
6.
6.T. E. Hui, D. R. Fisher, J. A. Kuhn, L. E. Williams, and C. Nourigat, “A mouse model for calculating cross-organ beta doses from yttrium-90-labeled immunoconjugates,” Cancer 73, 951957 (1994).
http://dx.doi.org/10.1002/1097-0142(19940201)73:3+¡951::AID-CNCR2820731330¿ 3.0.CO;2-1
7.
7.S. J. Kennel, M. Stabin, H. Yoriyaz, M. Brechbiel, and S. Mirzadeh, “Treatment of lung tumor colonies with 90Y targeted to blood vessels: Comparison with the α-particle emitter 213Bi,” Nucl. Med. Biol. 26, 149157 (1999).
http://dx.doi.org/10.1016/S0969-8051(98)00069-9
8.
8.M. Dhenain, S. W. Ruffins, and R. E. Jacobs, “Three-dimensional digital mouse atlas using high-resolution MRI,” Dev. Biol. 232, 458470 (2001).
http://dx.doi.org/10.1006/dbio.2001.0189
9.
9.A. Flynn, A. Green, R. Pedley, G. Boxer, and R. Boden, “A mouse model for calculating the absorbed beta-particle dose from 131I-and 90Y-labeled immunoconjugates, including a method for dealing with heterogeneity in kidney and tumor,” Radiat. Res. 156, 2835 (2001).
http://dx.doi.org/10.1667/0033-7587(2001)156[0028:AMMFCT]2.0.CO;2
10.
10.W. Jianqing and O. Fujiwara, “A novel setup for small animal exposure to near fields to test biological effects of cellular telephones,” IEICE Trans. Commun. 84, 30503059 (2001).
11.
11.K. S. Kolbert, T. Watson, C. Matei, S. Xu, and J. A. Koutcher, “Murine S factors for liver, spleen, and kidney,” J. Nucl. Med. 44, 784791 (2003).
12.
12.T. Funk, M. Sun, and B. H. Hasegawa, “Radiation dose estimate in small animal SPECT and PET,” Med. Phys. 31, 26802686 (2004).
http://dx.doi.org/10.1118/1.1781553
13.
13.C. Hindorf, M. Ljungberg, and S. E. Strand, “Evaluation of parameters influencing S values in mouse dosimetry,” J. Nucl. Med. 45, 19601965 (2004).
14.
14.W. P. Segars, B. M. Tsui, E. C. Frey, G. A. Johnson, and S. S. Berr, “Development of a 4-D digital mouse phantom for molecular imaging research,” Mol. Imaging Biol. 6, 149159 (2004).
http://dx.doi.org/10.1016/j.mibio.2004.03.002
15.
15.W. H. Miller, C. Hartmann-Siantar, D. Fisher, M.-A. Descalle, and T. Daly, “Evaluation of beta-absorbed fractions in a mouse model for 90Y, 188Re, 166Ho, 149Pm, 64Cu, and 177Lu radionuclides,” Cancer Biother.Radiopharm. 20, 436449 (2005).
http://dx.doi.org/10.1089/cbr.2005.20.436
16.
16.Y. Sato, H. Yamabayashi, and T. Nakamura, “Internal dose distribution of 90Y beta-ray source implanted in a small phantom simulating a mouse,” Radioisotopes 57, 385391 (2008).
http://dx.doi.org/10.3769/radioisotopes.57.385
17.
17.M. G. Stabin, T. E. Peterson, G. E. Holburn, and M. A. Emmons, “Voxel-based mouse and rat models for internal dose calculations,” J. Nucl. Med. 47, 655659 (2006).
18.
18.A. Bitar, A. Lisbona, P. Thedrez, C. S. Maurel, and D. Le Forestier, “A voxel-based mouse for internal dose calculations using Monte Carlo simulations (mcnp),” Phys. Med. Biol. 52, 10131025 (2007).
http://dx.doi.org/10.1088/0031-9155/52/4/010
19.
19.B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: A 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577587 (2007).
http://dx.doi.org/10.1088/0031-9155/52/3/003
20.
20.X. Zhang, J. Tian, J. Feng, S. Zhu, and G. Yan, “An anatomical mouse model for multimodal molecular imaging,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, Minneapolis, MN, 2009), pp. 58175820.
21.
21.M. A. Keenan, M. G. Stabin, W. P. Segars, and M. J. Fernald, “RADAR realistic animal model series for dose assessment,” J. Nucl. Med. 51, 471476 (2010).
http://dx.doi.org/10.2967/jnumed.109.070532
22.
22.R. L. McIntosh, L. Deppeler, M. Oliva, J. Parente, and F. Tambuwala, “Comparison of radiofrequency exposure of a mouse dam and foetuses at 900 MHz,” Phys. Med. Biol. 55, N111N122 (2010).
http://dx.doi.org/10.1088/0031-9155/55/4/N02
23.
23.J. C. Chow, M. K. Leung, P. E. Lindsay, and D. A. Jaffray, “Dosimetric variation due to the photon beam energy in the small-animal irradiation: A Monte Carlo study,” Med. Phys. 37, 53225329 (2010).
http://dx.doi.org/10.1118/1.3488979
24.
24.E. Larsson, M. Ljungberg, S. E. Strand, and B. A. Jönsson, “Monte Carlo calculations of absorbed doses in tumours using a modified MOBY mouse phantom for pre-clinical dosimetry studies,” Acta Oncol. 50, 973980 (2011).
http://dx.doi.org/10.3109/0284186X.2011.582517
25.
25.A. Mohammadi and S. Kinase, “Influence of voxel size on specific absorbed fractions and S-values in a mouse voxel phantom,” Radiat. Prot. Dosim. 143, 258263 (2011).
http://dx.doi.org/10.1093/rpd/ncq391
26.
26.X. Zhang, X. Xie, J. Cheng, J. Ning, and Y. Yuan, “Organ dose conversion coefficients based on a voxel mouse model and mcnp code for external photon irradiation,” Radiat. Prot. Dosim. 148, 919 (2012).
http://dx.doi.org/10.1093/rpd/ncr003
27.
27.T. Xie and H. Zaidi, “Monte Carlo-based evaluation of S-values in mouse models for positron-emitting radionuclides,” Phys. Med. Biol. 58, 169182 (2013).
http://dx.doi.org/10.1088/0031-9155/58/1/169
28.
28.M. Burkhardt, Y. Spinelli, and N. Kuster, “Exposure setup to test effects of wireless communications systems on the CNS,” Health Phys. 73, 770778 (1997).
http://dx.doi.org/10.1097/00004032-199711000-00004
29.
29.G. Lapin and C. Allen, “Requirements for accurate anatomical imaging of the rat for electromagnetic modeling,” in Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, Chicago, IL, 1997), Vol. 6, pp. 24802483.
30.
30.P. Mason, J. Ziriax, W. Hurt, and J. D’Andrea, “3-dimensional models for EMF dosimetry,” in Electricity and Magnetism in Biology and Medicine (Springer, New York, NY, 1999), pp. 291294.
31.
31.C. Chou, K. Chan, J. McDougall, and A. Guy, “Development of a rat head exposure system for simulating human exposure to RF fields from handheld wireless telephones,” Bioelectromagnetics 20, 7592 (1999).
http://dx.doi.org/10.1002/(SICI)1521-186X(1999)20:4+¡75::AID-BEM10¿ 3.0.CO;2-F
32.
32.S. Watanabe, A. Mukoyama, K. Wake, Y. Yamanaka, and T. Uno, “Microwave exposure setup for a long-term in vivo study,” in Proceedings of the International Symposium on Antennas and Propagation Japan (ISAP, Fukuoka, 2000), Vol. 1, pp. 225228.
33.
33.M. W. Konijnenberg, M. Bijster, E. P. Krenning, and M. de Jong, “A stylized computational model of the rat for organ dosimetry in support of preclinical evaluations of peptide receptor radionuclide therapy with 90Y, 111In, or 177Lu,” J. Nucl. Med. 45, 12601269 (2004).
34.
34.P. Leveque, C. Dale, B. Veyret, and J. Wiart, “Dosimetric analysis of a 900-MHz rat head exposure system,” IEEE Trans. Microwave Theory Tech. 52, 20762083 (2004).
http://dx.doi.org/10.1109/TMTT.2004.831984
35.
35.F. Schönborn, K. Poković, and N. Kuster, “Dosimetric analysis of the carousel setup for the exposure of rats at 1.62 GHz,” Bioelectromagnetics 25, 1626 (2004).
http://dx.doi.org/10.1002/bem.10153
36.
36.W. Kainz, N. Nikoloski, W. Oesch, V. Berdiñas-Torres, and J. Fröhlich, “Development of novel whole-body exposure setups for rats providing high efficiency, national toxicology program (NTP) compatibility and well-characterized exposure,” Phys. Med. Biol. 51, 52115229 (2006).
http://dx.doi.org/10.1088/0031-9155/51/20/009
37.
37.V. Lopresto, R. Pinto, A. De Vita, S. Mancini, and P. Galloni, “Exposure setup to study potential adverse effects at GSM 1800 and UMTS frequencies on the auditory systems of rats,” Radiat. Prot. Dosim. 123, 473482 (2007).
http://dx.doi.org/10.1093/rpd/ncl504
38.
38.ICRP, “Publication 108: Environmental protection: The concept and use of reference animals and plants,” Ann. ICRP 38, 2537 (2008).
39.
39.P. Peixoto, J. Vieira, H. Yoriyaz, and F. Lima, “Photon and electron absorbed fractions calculated from a new tomographic rat model,” Phys. Med. Biol. 53, 53435355 (2008).
http://dx.doi.org/10.1088/0031-9155/53/19/005
40.
40.L. Wu, G. Zhang, Q. Luo, and Q. Liu, “An image-based rat model for Monte Carlo organ dose calculations,” Med. Phys. 35, 37593764 (2008).
http://dx.doi.org/10.1118/1.2952647
41.
41.J. Wang, O. Fujiwara, K. Wake, and S. Watanabe, “Dosimetry evaluation for pregnant and fetus rats in a near-field exposure system of 1.95-GHz cellular phones,” IEEE Microwave Wireless Compon. Lett. 18, 260262 (2008).
http://dx.doi.org/10.1109/lmwc.2008.918901
42.
42.F. Pain, M. Dhenain, H. Gurden, A. Routier, and F. Lefebvre, “A method based on Monte Carlo simulations and voxelized anatomical atlases to evaluate and correct uncertainties on radiotracer accumulation quantitation in beta microprobe studies in the rat brain,” Phys. Med. Biol. 53, 53855404 (2008).
http://dx.doi.org/10.1088/0031-9155/53/19/008
43.
43.G. Zhang, T. Xie, H. Bosmans, and Q. Liu, “Development of a rat computational phantom using boundary representation method for Monte Carlo simulation in radiological imaging,” Proc. IEEE 97, 20062014 (2009).
http://dx.doi.org/10.1109/JPROC.2009.2028446
44.
44.T. Arima, H. Watanabe, K. Wake, H. Masuda, and S. Watanabe, “Local exposure system for rats head using a figure-8 loop antenna in 1500-MHz band,” IEEE Trans. Biomed. Eng. 58, 27402747 (2011).
http://dx.doi.org/10.1109/TBME.2010.2103942
45.
45.E. Larsson, M. Ljungberg, L. Mårtensson, R. Nilsson, and J. Tennvall, “Use of Monte Carlo simulations with a realistic rat phantom for examining the correlation between hematopoietic system response and red marrow absorbed dose in Brown Norway rats undergoing radionuclide therapy with 177Lu-and 90Y-BR96 mAbs,” Med. Phys. 39, 44344443 (2012).
http://dx.doi.org/10.1118/1.4730499
46.
46.T. Xie, Q. Liu, and H. Zaidi, “Evaluation of S-values and dose distributions for 90Y, 131I, 166Ho, and 188Re in seven lobes of the rat liver,” Med. Phys. 39, 14621472 (2012).
http://dx.doi.org/10.1118/1.3681009
47.
47.T. Xie and H. Zaidi, “Age-dependent small-animal internal radiation dosimetry,” Mol. Imaging 12, 364375 (2013).
48.
48.T. Xie and H. Zaidi, “Effect of emaciation and obesity on small-animal internal radiation dosimetry for positron-emitting radionuclides,” Eur. J. Nucl. Med. Mol. Imaging 40, 17481759 (2013).
http://dx.doi.org/10.1007/s00259-013-2485-9
49.
49.E. Caffrey and K. Higley, “Creation of a voxel phantom of the ICRP reference crab,” J. Environ. Radioact. 120, 1418 (2013).
http://dx.doi.org/10.1016/j.jenvrad.2013.01.006
50.
50.C. Hess, “Monte Carlo derived absorbed fractions in a voxelized model of a rainbow trout,” Master’s Thesis, Oregon State University (2014).
51.
51.S. Kinase, “Voxel-based frog phantom for internal dose evaluation,” J. Nucl. Sci. Technol. 45, 10491052 (2008).
http://dx.doi.org/10.1080/18811248.2008.9711891
52.
52.E. A. Caffrey, “Improvements in the dosimetric models of selected benthic organisms,” Master’s thesis, Oregon State University, 2012.
53.
53.L. Padilla, C. Lee, R. Milner, A. Shahlaee, and W. E. Bolch, “Canine anatomic phantom for preclinical dosimetry in internal emitter therapy,” J. Nucl. Med. 49, 446452 (2008).
http://dx.doi.org/10.2967/jnumed.107.046722
54.
54.T. Toivonen, T. Toivo, R. Pitkäaho, L. Puranen, and M. Silfverhuth, “Setup and dosimetry for exposing anaesthetised pigs in vivo to 900 MHz GSM mobile phone fields,” Bioelectromagnetics 29, 363370 (2008).
http://dx.doi.org/10.1002/bem.20404
55.
55.K. Wake, H. Hongo, S. Watanabe, M. Taki, and Y. Kamimura, “Development of a 2.45-GHz local exposure system for in vivo study on ocular effects,” IEEE Trans. Microwave Theory Tech. 55, 588596 (2007).
http://dx.doi.org/10.1109/TMTT.2006.890531
56.
56.H. Zaidi and I. El Naqa, “PET-guided delineation of radiation therapy treatment volumes: A survey of image segmentation techniques,” Eur. J. Nucl. Med. Mol. Imaging 37, 21652187 (2010).
http://dx.doi.org/10.1007/s00259-010-1423-3
57.
57.J. M. Boone, O. Velazquez, and S. R. Cherry, “Small-animal x-ray dose from micro-CT,” Mol. Imaging 3, 149158 (2004).
http://dx.doi.org/10.1162/1535350042380326
58.
58.C. T. Badea, M. Drangova, D. W. Holdsworth, and G. A. Johnson, “In vivo small-animal imaging using micro-CT and digital subtraction angiography,” Phys. Med. Biol. 53, R319R350 (2008).
http://dx.doi.org/10.1088/0031-9155/53/19/R01
59.
59.N. L. Ford, M. M. Thornton, and D. W. Holdsworth, “Fundamental image quality limits for microcomputed tomography in small animals,” Med. Phys. 30, 28692877 (2003).
http://dx.doi.org/10.1118/1.1617353
60.
60.R. Taschereau, P. L. Chow, and A. F. Chatziioannou, “Monte Carlo simulations of dose from microCT imaging procedures in a realistic mouse phantom,” Med. Phys. 33, 216224 (2006).
http://dx.doi.org/10.1118/1.2148333
61.
61.S. K. Carlson, K. L. Classic, C. E. Bender, and S. J. Russell, “Small animal absorbed radiation dose from serial micro-computed tomography imaging,” Mol. Imaging Biol. 9, 7882 (2007).
http://dx.doi.org/10.1007/s11307-007-0080-9
62.
62.C. T. Badea, B. Fubara, L. W. Hedlund, and G. A. Johnson, “4-D micro-CT of the mouse heart,” Mol. Imaging 4, 110116 (2005).
63.
63.A. Joshi, A. Chaudhari, C. Li, D. Shattuck, J. Dutta, R. Leahy, and A. Toga, “Posture matching and elastic registration of a mouse atlas to surface topography range data,” in International Symposium on Biomedical Imaging: From Nano to Macro, ISBI’09 (IEEE, 2009), pp. 366369.
http://dx.doi.org/10.1088/0031-9155/58/1/169
64.
64.H. Wang, D. B. Stout, and A. F. Chatziioannou, “A deformable atlas of the laboratory mouse,” Mol. Imaging Biol. 17, 1828 (2014).
http://dx.doi.org/10.1007/s11307-014-0767-7
65.
65.E. Ruedig, E. Caffrey, C. Hess, and K. Higley, “Monte Carlo derived absorbed fractions for a voxelized model of Oncorhynchus mykiss, a rainbow trout,” Radiat. Environ. Biophys. 53, 581587 (2014).
http://dx.doi.org/10.1007/s00411-014-0546-5
66.
66.H. Zaidi, “Relevance of accurate Monte Carlo modeling in nuclear medical imaging,” Med. Phys. 26, 574608 (1999).
http://dx.doi.org/10.1118/1.598559
67.
67.D. Rogers, “Fifty years of Monte Carlo simulations for medical physics,” Phys. Med. Biol. 51, R287R301 (2006).
http://dx.doi.org/10.1088/0031-9155/51/13/R17
68.
68.I. Kawrakow and D. Rogers, The EGSnrc code system: Monte Carlo simulation of electron and photon transport, 2014, available at http://irs.inms.nrc.ca/software/egsnrc/.
69.
69.J. F. Briesmeister, mcnp—A general Monte Carlo code for neutron and photon transport, LA-7396–M, 1986.
70.
70.S. Agostinelli, J. Allison, K. a. Amako, J. Apostolakis, and H. Araujo, “ geant4—A simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250303 (2003).
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
71.
71.C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt. 18, 050902050903 (2013).
http://dx.doi.org/10.1117/1.JBO.18.5.050902
72.
72.M. N. Sadiku, Numerical Techniques in Electromagnetics (CRC, Boca Raton, FL, 2000).
73.
73.S. M. Rao, D. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409418 (1982).
http://dx.doi.org/10.1109/TAP.1982.1142818
74.
74.A. Taflove and S. C. Hagness, Computationai Electrodynamics (Artech House, Norwood, 2000).
75.
75.A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, and J. D. Joannopoulos, “ meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687702 (2010).
http://dx.doi.org/10.1016/j.cpc.2009.11.008
76.
76.cst, Computer simulation technology, https://www.cst.com/, accessed 2015.
77.
77.REMCOM, http://www.remcom.com, accessed 2015.
78.
78.A. Bitar, A. Lisbona, and M. Bardies, “S-factor calculations for mouse models using Monte-Carlo simulations,” Q. J. Nucl. Med. Mol. Imaging 51, 343351 (2007).
79.
79.S. Kinase, “Monte Carlo simulations of photon absorbed fractions in a frog voxel phantom,” Proc. IEEE 97, 20862097 (2009).
http://dx.doi.org/10.1109/JPROC.2009.2023811
80.
80.S. Kinase, A. Mohammadi, M. Takahashi, K. Saito, and M. Zankl, “Computer simulations for internal dosimetry using voxel models,” Radiat. Prot. Dosim. 146, 191194 (2011).
http://dx.doi.org/10.1093/rpd/ncr145
81.
81.E. Larsson, S. E. Strand, M. Ljungberg, and B. A. Jonsson, “Mouse S-factors based on Monte Carlo simulations in the anatomical realistic Moby phantom for internal dosimetry,” Cancer Biother. Radiopharm. 22, 438442 (2007).
http://dx.doi.org/10.1089/cbr.2006.320
82.
82.T. Xie, D. Han, Y. Liu, W. Sun, and Q. Liu, “Skeletal dosimetry in a voxel-based rat phantom for internal exposures to photons and electrons,” Med. Phys. 37, 21672178 (2010).
http://dx.doi.org/10.1118/1.3380223
83.
83.M. Luna-Gutierrez, G. Ferro-Flores, B. Ocampo-Garcia, N. Jimenez-Mancilla, and E. Morales-Avila, “177Lu-labeled monomeric, dimeric and multimeric RGD peptides for the therapy of tumors expressing a(v) b(3) integrins,” J. Labelled Compd. Radiopharm. 55, 140148 (2012).
http://dx.doi.org/10.1002/jlcr.2910
84.
84.J. M. Bertho, N. Synhaeve, H. Miloudi, J. Stefani, and A. Desbree, “Absorbed radiation doses due to chronic ingestion of cesium-137 or strontium-90 by mice,” Radioprotection 47, 219230 (2012).
http://dx.doi.org/10.1051/radiopro/2011161
85.
85.H. Song, K. Shahverdi, D. L. Huso, C. Esaias, and J. Fox, “Bi-213 (alpha-emitter)-antibody targeting of breast cancer metastases in the neu-N transgenic mouse model,” Cancer Res. 68, 38733880 (2008).
http://dx.doi.org/10.1158/0008-5472.CAN-07-6308
86.
86.L. Melendez-Alafort, A. Nadali, E. Zangoni, A. Banzato, and M. Rondina, “Biokinetic and dosimetric studies of Re-188-hyaluronic acid: A new radiopharmaceutical for treatment of hepatocellular carcinoma,” Nucl. Med. Biol. 36, 693701 (2009).
http://dx.doi.org/10.1016/j.nucmedbio.2009.04.006
87.
87.J. Rodriguez-Cortes, C. A. De Murphy, G. Ferro-Flores, M. Pedraza-Lopez, and E. Murphy-Stack, “Biokinetics and dosimetry with Lu-177-DOTA-TATE in athymic mice with induced pancreatic malignant tumours: Preclinical studies,” Radiat. Eff. Defects Solids 162, 791796 (2007).
http://dx.doi.org/10.1080/10420150701482568
88.
88.E. R. Balkin, F. Jia, W. H. Miller, and M. R. Lewis, “In vitro evaluation of targeted antisense Lu-177 radiotherapy,” Anticancer Res. 31, 31433149 (2011).
89.
89.E. Fischer, J. Gruenberg, S. Cohrs, A. Hohn, and K. Waldner-Knogler, “L1-CAM-targeted antibody therapy and 177Lu-radioimmunotherapy of disseminated ovarian cancer,” Int. J. Cancer 130, 27152721 (2012).
http://dx.doi.org/10.1002/ijc.26321
90.
90.M. S. Muthuswamy, P. L. Roberson, and D. J. Buchsbaum, “A mouse bone marrow dosimetry model,” J. Nucl. Med. 39, 12431247 (1998).
91.
91.D. J. Green, N. N. Orgun, J. C. Jones, M. D. Hylarides, and J. M. Pagel, “A preclinical model of CD38-pretargeted radioimmunotherapy for plasma cell malignancies,” Cancer Res. 74, 11791189 (2014).
http://dx.doi.org/10.1158/0008-5472.CAN-13-1589
92.
92.E. Frampas, C. Maurel, P. R.-L. Saec, T. Mauxion, and A. Faivre-Chauvet, “Pretargeted radioimmunotherapy of colorectal cancer metastases: Models and pharmacokinetics predict influence of the physical and radiochemical properties of the radionuclide,” Eur. J. Nucl. Med. Mol. Imaging 38, 21532164 (2011).
http://dx.doi.org/10.1007/s00259-011-1903-0
93.
93.J. Lazewatsky, Y. H. Ding, D. Onthank, P. Silva, and E. Solon, “Radiation dose to abdominal organs of the mouse due to Y-90 in the urinary bladder,” Cancer Biother.Radiopharm. 18, 413419 (2003).
http://dx.doi.org/10.1089/108497803322285152
94.
94.G. Sgouros, M. Stabin, Y. Erdi, G. Akabani, and C. Kwok, “Red marrow dosimetry for radiolabeled antibodies that bind to marrow, bone, or blood components,” Med. Phys. 27, 21502164 (2000).
http://dx.doi.org/10.1118/1.1288393
95.
95.G. Liu, S. Dou, G. Mardirossian, J. He, and S. Zhang, “Successful radiotherapy of tumor in pretargeted mice by Re-188-radiolabeled phosphorodiamidate morpholino oligomer, a synthetic DNA analogue,” Clin. Cancer Res. 12, 49584964 (2006).
http://dx.doi.org/10.1158/1078-0432.CCR-06-0844
96.
96.E. R. Balkin, D. Liu, F. Jia, V. C. Ruthengael, and S. M. Shaffer, “Comparative biodistributions and dosimetry of Lu-177 DOTA-anti-bcl-2-PNA-Tyr(3)-octreotate and Lu-177 DOTA-Tyr(3)-octreotate in a mouse model of B-cell lymphoma/leukemia,” Nucl. Med. Biol. 41, 3642 (2014).
http://dx.doi.org/10.1016/j.nucmedbio.2013.10.006
97.
97.J. N. Bryan, F. Jia, H. Mohsin, G. Sivaguma, and W. H. Miller, “Comparative uptakes and biodistributions of internalizing vs. noninternalizing copper-64 radioimmunoconjugates in cell and animal models of colon cancer,” Nucl. Med. Biol. 32, 851858 (2005).
http://dx.doi.org/10.1016/j.nucmedbio.2005.05.006
98.
98.B. Cambien, P. R. Franken, A. Lamit, T. Mauxion, and P. Richard-Fiardo, “(TcO4-)-Tc-99m-, auger-mediated thyroid stunning: Dosimetric requirements and associated molecular events,” PLoS One 9, e92729 (2014).
http://dx.doi.org/10.1371/journal.pone.0092729
99.
99.S. M. Goddu, A. Bishayee, L. G. Bouchet, W. E. Bolch, and D. V. Rao, “Marrow toxicity of P-33- versus P-32-orthophosphate: Implications for therapy of bone pain and bone metastases,” J. Nucl. Med. 41, 941951 (2000).
100.
100.S. Kinase, S. Matsuhashi, and K. Saito, “Interspecies scaling of self-organ dose from a voxel mouse to voxel humans,” Nucl. Technol. 168, 154157 (2009).
101.
101.M. Melis, E. Vegt, M. W. Konijnenberg, M. de Visser, and M. Bijster, “Nephrotoxicity in mice after repeated imaging using In-111-labeled peptides,” J. Nucl. Med. 51, 973977 (2010).
http://dx.doi.org/10.2967/jnumed.109.074310
102.
102.H. Mohsin, F. Jia, J. N. Bryan, G. Sivaguru, and C. S. Cutler, “Comparison of pretargeted and conventional CC49 radioimmunotherapy using (149)pm, Ho-166, and Lu-177,” Bioconjugate Chem. 22, 24442452 (2011).
http://dx.doi.org/10.1021/bc200258x
103.
103.R. Taschereau and A. F. Chatziioannou, “Monte Carlo simulations of absorbed dose in a mouse phantom from 18-fluorine compounds,” Med. Phys. 34, 10261036 (2007).
http://dx.doi.org/10.1118/1.2558115
104.
104.S. Thompson, B. Ballard, Z. Jiang, E. Revskaya, and N. Sisay, “Ho-166 and Y-90 labeled 6D2 monoclonal antibody for targeted radiotherapy of melanoma: Comparison with Re-188 radiolabel,” Nucl. Med. Biol. 41, 276281 (2014).
http://dx.doi.org/10.1016/j.nucmedbio.2013.12.015
105.
105.O. Ugur, L. Kostakoglu, E. T. Hui, D. R. Fisher, and K. Garmestani, “Comparison of the targeting characteristics of various radioimmunoconjugates for radioimmunotherapy of neuroblastoma: Dosimetry calculations incorporating cross-organ beta doses,” Nucl. Med. Biol. 23, 18 (1996).
http://dx.doi.org/10.1016/0969-8051(95)02001-2
106.
106.O. Ugur, A. M. Scott, L. Kostakoglu, T. E. Hui, and M. E. Masterson, “Calculated and TLD-based absorbed dose estimates for I-131-labeled 3F8 monoclonal-antibody in a human neuroblastoma xenograft nude-mouse model,” Nucl. Med. Biol. 22, 8793 (1995).
http://dx.doi.org/10.1016/0969-8051(94)E0066-R
107.
107.L. Aranda-Lara, G. Ferro-Flores, E. Azorín-Vega, F. de María Ramírez, N. Jiménez-Mancilla, B. Ocampo-García, C. Santos-Cuevas, and K. Isaac-Olivé, “Synthesis and evaluation of Lys 1 (α, γ-Folate) Lys 3 (177 Lu-DOTA)-Bombesin (1-14) as a potential theranostic radiopharmaceutical for breast cancer,” Appl. Radiat. Isot. 107, 214219 (2015).
http://dx.doi.org/10.1016/j.apradiso.2015.10.030
108.
108.S. Boutaleb, J.-P. Pouget, C. Hindorf, A. Pelegrin, and J. Barbet, “Impact of mouse model on preclinical dosimetry in targeted radionuclide therapy,” Proc. IEEE 97, 20762085 (2009).
http://dx.doi.org/10.1109/JPROC.2009.2026921
109.
109.A. Mohammadi, S. Kinase, and K. Saito, “Evaluation of absorbed doses in voxel-based and simplified models for small animals,” Radiat. Prot. Dosim. 150, 283291 (2012).
http://dx.doi.org/10.1093/rpd/ncr419
110.
110.T. Xie and H. Zaidi, “Assessment of S values in stylized and voxel-based rat models for positron-emitting radionuclides,” Mol. Imaging Biol. 15, 542551 (2013).
http://dx.doi.org/10.1007/s11307-013-0632-0
111.
111.T. Mauxion, J. Barbet, J. Suhard, J.-P. Pouget, and M. Poirot, “Improved realism of hybrid mouse models may not be sufficient to generate reference dosimetric data,” Med. Phys. 40, 052501 (11pp.) (2013).
http://dx.doi.org/10.1118/1.4800801
112.
112.P. A. Mason, W. D. Hurt, T. J. Walters, J. A. D’Andrea, and P. Gajsek, “Effects of frequency, permittivity, and voxel size on predicted specific absorption rate values in biological tissue during electromagnetic-field exposure,” IEEE Trans. Microwave Theory Tech. 48, 20502058 (2000).
http://dx.doi.org/10.1109/22.884194
113.
113.A. Hirata, H. Masuda, Y. Kanai, R. Asai, and O. Fujiwara, “Computational modeling of temperature elevation and thermoregulatory response in the brains of anesthetized rats locally exposed at 1.5 GHz,” Phys. Med. Biol. 56, 76397657 (2011).
http://dx.doi.org/10.1088/0031-9155/56/23/019
114.
114.E. Lopez-Martin, J. C. Bregains, F. J. Jorge-Barreiro, J. L. Sebastian-Franco, and E. Moreno-Piquero, “An experimental set-up for measurement of the power absorbed from 900 MHz GSM standing waves by small animals, illustrated by application to picrotoxin-treated rats,” Prog. Electromagn. Res. 87, 149165 (2008).
http://dx.doi.org/10.2528/PIER08101307
115.
115.N. Prochnow, T. Gebing, K. Ladage, D. Krause-Finkeldey, and A. El Ouardi, “Electromagnetic field effect or simply stress? Effects of UMTS exposure on hippocampal longterm plasticity in the context of procedure related hormone release,” PLoS One 6, e19437 (2011).
http://dx.doi.org/10.1371/journal.pone.0019437
116.
116.L. Puranen, T. Toivo, T. Toivonen, R. Pitkaeaeho, and A. Turunen, “Space efficient system for whole-body exposure of unrestrained rats to 900 MHz electromagnetic fields,” Bioelectromagnetics 30, 120128 (2009).
http://dx.doi.org/10.1002/bem.20449
117.
117.K. Wake, A. Mukoyama, S. Watanabe, Y. Yamanaka, and T. Uno, “An exposure system for long-term and large-scale animal bioassay of 1.5-GHz digital cellular phones,” IEEE Trans. Microwave Theory Tech. 55, 343350 (2007).
http://dx.doi.org/10.1109/TMTT.2006.889149
118.
118.J. Wang, O. Fujiwara, H. Kawai, K. Wake, and S. Watanabe, “Development and dosimetry analysis of a 2-GHz whole-body exposure setup for unrestrained pregnant and newborn rats,” IEEE Trans. Microwave Theory Tech. 56, 20082013 (2008).
http://dx.doi.org/10.1109/tmtt.2008.927402
119.
119.J. Wang, W. Liao, H. Kawai, K. Wake, and S. Watanabe, “Performance and validation of a broadband-multigeneration exposure system for unconstrained rats,” IEEE Trans. Microwave Theory Tech. 61, 326334 (2013).
http://dx.doi.org/10.1109/TMTT.2012.2228672
120.
120.J. Q. Wang, M. Fujita, O. Fujiwara, K. Wake, and S. Watanabe, “Uncertainty evaluation of an in vivo near-field exposure setup for testing biological effects cellular phones,” IEEE Trans. Electromagn. Compat. 48, 545551 (2006).
http://dx.doi.org/10.1109/TEMC.2006.877779
121.
121.J. Q. Wang and O. Fujiwara, “Realizing highly localized exposure in small animals with absorbing material covered holder to test biological effects of 1.5 GHz cellular telephones,” IEICE Trans. Commun. E86B, 16601665 (2003).
122.
122.J. Q. Wang, T. Saito, and O. Fujiwara, “Uncertainty evaluation of dosimetry due to plastic holder for restraining small animal in in vivo near field exposure setup,” IEEE Trans. Electromagn. Compat. 46, 263267 (2004).
http://dx.doi.org/10.1109/TEMC.2004.826879
123.
123.L. Yang, D. Hao, S. Wu, R. Zhong, and Y. Zeng, “SAR and temperature distribution in the rat head model exposed to electromagnetic field radiation by 900 MHz dipole antenna,” Australas. Phys. Eng. Sci. Med. 36, 251257 (2013).
http://dx.doi.org/10.1007/s13246-013-0202-4
124.
124.A. Hirata and O. Fujiwara, “Modeling time variation of blood temperature in a bioheat equation and its application to temperature analysis due to RF exposure,” Phys. Med. Biol. 54, N189N196 (2009).
http://dx.doi.org/10.1088/0031-9155/54/10/N02
125.
125.A. Hirata, H. Sugiyama, M. Kojima, H. Kawai, and Y. Yamashiro, “Computational model for calculating body-core temperature elevation in rabbits due to whole-body exposure at 2.45 GHz,” Phys. Med. Biol. 53, 33913404 (2008).
http://dx.doi.org/10.1088/0031-9155/53/12/022
126.
126.T. Oizumi, I. Laakso, A. Hirata, O. Fujiwara, and S. Watanabe, “FDTD analysis of temperature elevation in the lens of human and rabbit models due to near-field and far-field exposures at 2.45 GHz,” Radiat. Prot. Dosim. 155, 284291 (2013).
http://dx.doi.org/10.1093/rpd/nct010
127.
127.R. Pinto, V. Lopresto, P. Galloni, C. Marino, and S. Mancini, “Dosimetry of a set-up for the exposure of newborn mice to 2.45-GHz WiFi frequencies,” Radiat. Prot. Dosim. 140, 326332 (2010).
http://dx.doi.org/10.1093/rpd/ncq129
128.
128.J. Q. Wang, O. Fujiwara, and T. Ono, “Dosimetry evaluation of a whole body exposure setup for small animal at 2.45 GHz,” IEICE Trans. Commun. E85B, 29632965 (2002).
129.
129.T. Wu, A. Hadjem, M.-F. Wong, A. Gati, O. Picon, and J. Wiart, “Whole-body new-born and young rats’ exposure assessment in a reverberating chamber operating at 2.4 GHz,” Phys. Med. Biol. 55, 16191630 (2010).
http://dx.doi.org/10.1088/0031-9155/55/6/006
130.
130.A. Trakic, S. Crozier, and F. Liu, “Numerical modelling of thermal effects in rats due to high-field magnetic resonance imaging (0.5-1 GHz),” Phys. Med. Biol. 49, 55475558 (2004).
http://dx.doi.org/10.1088/0031-9155/49/24/010
131.
131.A. Koenik, M. T. Madsen, and J. J. Sunderland, “GATE simulations of small animal SPECT for determination of scatter fraction as a function of object size,” IEEE Trans. Nucl. Sci. 59, 18871891 (2012).
http://dx.doi.org/10.1109/tns.2012.2205403
132.
132.A. Konik, T. Koesters, M. T. Madsen, and J. J. Sunderland, “Evaluation of attenuation and scatter correction requirements as a function of object size in small animal PET imaging,” IEEE Trans. Nucl. Sci. 58, 23082314 (2011).
http://dx.doi.org/10.1109/TNS.2011.2160998
133.
133.A. Konik, M. T. Madsen, and J. J. Sunderland, “GATE simulations of human and small animal PET for determination of scatter fraction as a function of object size,” IEEE Trans. Nucl. Sci. 57, 25582563 (2010).
http://dx.doi.org/10.1109/TNS.2010.2065240
134.
134.R. Prasad and H. Zaidi, “Scatter characterization and correction for simultaneous multiple small-animal PET imaging,” Mol. Imaging Biol. 16, 199209 (2014).
http://dx.doi.org/10.1007/s11307-013-0683-2
135.
135.R. Prasad and H. Zaidi, “A cone-shaped phantom for assessment of small animal PET scatter fraction and count rate performance,” Mol. Imaging Biol. 14, 561571 (2012).
http://dx.doi.org/10.1007/s11307-012-0546-2
136.
136.A. Sisniega, W. Zbijewski, A. Badal, I. S. Kyprianou, and J. W. Stayman, “Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions,” Med. Phys. 40, 051915 (19pp.) (2013).
http://dx.doi.org/10.1118/1.4801895
137.
137.E. Brard and D. Brasse, “Axially oriented crystal geometry applied to small-animal PET system: A proof of concept,” IEEE Trans. Nucl. Sci. 60, 14711477 (2013).
http://dx.doi.org/10.1109/TNS.2013.2240698
138.
138.T. Funk, P. Despres, W. C. Barber, K. S. Shah, and B. H. Hasegawa, “A multipinhole small animal SPECT system with submillimeter spatial resolution,” Med. Phys. 33, 12591268 (2006).
http://dx.doi.org/10.1118/1.2190332
139.
139.S. C. Huang, D. Truong, H. M. Wu, A. F. Chatziioannou, and W. Shao, “An internet-based ‘kinetic imaging system’ (KIS) for MicroPET,” Mol. Imaging Biol. 7, 330341 (2005).
http://dx.doi.org/10.1007/s11307-005-0014-3
140.
140.R. Van Holen, B. Vandeghinste, K. Deprez, and S. Vandenberghe, “Design and performance of a compact and stationary microSPECT system,” Med. Phys. 40, 112501 (11pp.) (2013).
http://dx.doi.org/10.1118/1.4822621
141.
141.F. Boisson, C. J. Wimberley, W. Lehnert, D. Zahra, and T. Pham, “NEMA NU 4-2008 validation and applications of the PET-SORTEO Monte Carlo simulations platform for the geometry of the Inveon PET preclinical scanner,” Phys. Med. Biol. 58, 67496763 (2013).
http://dx.doi.org/10.1088/0031-9155/58/19/6749
142.
142.S. Branco, S. Jan, and P. Almeida, “Monte Carlo simulations in small animal PET imaging,” Nucl. Instrum. Methods Phys. Res., Sect. A 580, 11271130 (2007).
http://dx.doi.org/10.1016/j.nima.2007.06.080
143.
143.W. Branderhorst, F. van der Have, B. Vastenhouw, M. A. Viergever, and F. J. Beekman, “Murine cardiac images obtained with focusing pinhole SPECT are barely influenced by extra-cardiac activity,” Phys. Med. Biol. 57, 717732 (2012).
http://dx.doi.org/10.1088/0031-9155/57/3/717
144.
144.C. L. Chen, Y. Wang, J. J. S. Lee, and B. M. W. Tsui, “Integration of SimSET photon history generator in GATE for efficient Monte Carlo simulations of pinhole SPECT,” Med. Phys. 35, 32783284 (2008).
http://dx.doi.org/10.1118/1.2940159
145.
145.M. C. Goorden and F. J. Beekman, “High-resolution tomography of positron emitters with clustered pinhole SPECT,” Phys. Med. Biol. 55, 12651277 (2010).
http://dx.doi.org/10.1088/0031-9155/55/5/001
146.
146.C. Lartizien, C. Kuntner, A. L. Goertzen, A. C. Evans, and A. Reilhac, “Validation of PET-SORTEO Monte Carlo simulations for the geometries of the MicroPET R4 and Focus 220 PET scanners,” Phys. Med. Biol. 52, 48454862 (2007).
http://dx.doi.org/10.1088/0031-9155/52/16/009
147.
147.O. Lee and J. C. Ye, “Joint sparsity-driven non-iterative simultaneous reconstruction of absorption and scattering in diffuse optical tomography,” Opt. Express 21, 2658926604 (2013).
http://dx.doi.org/10.1364/OE.21.026589
148.
148.G. S. P. Mok, Y. Du, Y. Wang, E. C. Frey, and B. M. W. Tsui, “Development and validation of a Monte Carlo simulation tool for multi-pinhole SPECT,” Mol. Imaging Biol. 12, 295304 (2010).
http://dx.doi.org/10.1007/s11307-009-0263-7
149.
149.G. S. P. Mok, Y. Wang, and B. M. W. Tsui, “Quantification of the multiplexing effects in multi-pinhole small animal SPECT: A simulation study,” IEEE Trans. Nucl. Sci. 56, 26362643 (2009).
http://dx.doi.org/10.1109/TNS.2009.2023444
150.
150.G. S. P. Mok, J. Yu, Y. Du, Y. Wang, and B. M. W. Tsui, “Evaluation of a multi-pinhole collimator for imaging small animals with different sizes,” Mol. Imaging Biol. 14, 6069 (2012).
http://dx.doi.org/10.1007/s11307-011-0472-8
151.
151.M. Baiker, J. Milles, J. Dijkstra, T. D. Henning, and A. W. Weber, “Atlas-based whole-body segmentation of mice from low-contrast micro-CT data,” Med. Image Anal. 14, 723737 (2010).
http://dx.doi.org/10.1016/j.media.2010.04.008
152.
152.J. Cheng-Liao and J. Qi, “Segmentation of mouse dynamic PET images using a multiphase level set method,” Phys. Med. Biol. 55, 65496569 (2010).
http://dx.doi.org/10.1088/0031-9155/55/21/014
153.
153.D. Clark, A. Badea, Y. Liu, G. A. Johnson, and C. T. Badea, “Registration-based segmentation of murine 4D cardiac micro-CT data using symmetric normalization,” Phys. Med. Biol. 57, 61256145 (2012).
http://dx.doi.org/10.1088/0031-9155/57/19/6125
154.
154.A. Khmelinskii, H. C. Groen, M. Baiker, M. de Jong, and B. P. F. Lelieveldt, “Segmentation and visual analysis of whole-body mouse skeleton microSPECT,” PLoS One 7, e48976 (2012).
http://dx.doi.org/10.1371/journal.pone.0048976
155.
155.R. Maroy, R. Boisgard, C. Comat, V. Frouin, and P. Cathier, “Segmentation of rodent whole-body dynamic PET images: An unsupervised method based on voxel dynamics,” IEEE Trans. Med. Imaging 27, 342354 (2008).
http://dx.doi.org/10.1109/TMI.2007.905106
156.
156.C. T. Badea, E. Schreibmann, and T. Fox, “A registration based approach for 4D cardiac micro-CT using combined prospective and retrospective gating,” Med. Phys. 35, 11701179 (2008).
http://dx.doi.org/10.1118/1.2868778
157.
157.D. F. Gutierrez and H. Zaidi, “Automated analysis of small animal PET studies through deformable registration to an atlas,” Eur. J. Nucl. Med. Mol. Imaging 39, 18071820 (2012).
http://dx.doi.org/10.1007/s00259-012-2188-7
158.
158.S. C. Moore, S. Southekal, M.-A. Park, S. J. McQuaid, and M. F. Kijewski, “Improved regional activity quantitation in nuclear medicine using a new approach to correct for tissue partial volume and spillover effects,” IEEE Trans. Med. Imaging 31, 405416 (2012).
http://dx.doi.org/10.1109/TMI.2011.2169981
159.
159.H. Wang, D. B. Stout, and A. F. Chatziioannou, “Mouse atlas registration with non-tomographic imaging modalities—A pilot study based on simulation,” Mol. Imaging Biol. 14, 408419 (2012).
http://dx.doi.org/10.1007/s11307-011-0519-x
160.
160.H. Wang, D. B. Stout, and A. F. Chatziioannou, “Estimation of mouse organ locations through registration of a statistical mouse atlas with micro-CT images,” IEEE Trans. Med. Imaging 31, 88102 (2012).
http://dx.doi.org/10.1109/tmi.2011.2165294
161.
161.H. M. Wu, M. C. Kreissl, H. R. Schelbert, W. Ladno, and M. Prins, “First-pass angiography in mice using FDG-PET: A simple method of deriving the cardiovascular transit time without the need of region-of-interest drawing,” IEEE Trans. Nucl. Sci. 52, 13111315 (2005).
http://dx.doi.org/10.1109/tns.2005.858239
162.
162.J. Cabello and M. Rafecas, “Comparison of basis functions for 3D PET reconstruction using a Monte Carlo system matrix,” Phys. Med. Biol. 57, 17591777 (2012).
http://dx.doi.org/10.1088/0031-9155/57/7/1759
163.
163.J. Cheng-Liao and J. Qi, “PET image reconstruction with anatomical edge guided level set prior,” Phys. Med. Biol. 56, 68996918 (2011).
http://dx.doi.org/10.1088/0031-9155/56/21/009
164.
164.D. D’Ambrosio, G. Fiacchi, M. Marengo, S. Boschi, and S. Fanti, “Reconstruction of images using accurate system point spread function modeling: Effects on parametric images,” J. Mech. Med. Biol. 10, 7394 (2010).
http://dx.doi.org/10.1142/S021951941000323X
165.
165.A. Gaitanis, G. Kontaxakis, G. Spyrou, G. Panayiotakis, and G. Tzanakos, “PET image reconstruction: A stopping rule for the MLEM algorithm based on properties of the updating coefficients,” Comput. Med. Imaging Graphics 34, 131141 (2010).
http://dx.doi.org/10.1016/j.compmedimag.2009.07.006
166.
166.E. Quan and D. S. Lalush, “A faster ordered-subset convex algorithm for iterative reconstruction in a rotation-free micro-CT system,” Phys. Med. Biol. 54, 10611072 (2009).
http://dx.doi.org/10.1088/0031-9155/54/4/016
167.
167.A. Salomon, B. Goldschmidt, R. Botnar, F. Kiessling, and V. Schulz, “A self-normalization reconstruction technique for PET scans using the positron emission data,” IEEE Trans. Med. Imaging 31, 22342240 (2012).
http://dx.doi.org/10.1109/TMI.2012.2213827
168.
168.T. Dumouchel and R. A. deKemp, “Analytical-based partial volume recovery in mouse heart imaging,” IEEE Trans. Nucl. Sci. 58, 110120 (2011).
http://dx.doi.org/10.1109/TNS.2010.2084589
169.
169.T. Dumouchel, S. Thorn, M. Kordos, J. DaSilva, and R. S. B. Beanlands, “A three-dimensional model-based partial volume correction strategy for gated cardiac mouse PET imaging,” Phys. Med. Biol. 57, 43094334 (2012).
http://dx.doi.org/10.1088/0031-9155/57/13/4309
170.
170.A. L. Kesner, M. Dahlbom, S.-C. Huang, W.-A. Hsueh, and B. S. Pio, “Semiautomated analysis of small-animal PET data,” J. Nucl. Med. 47, 11811186 (2006).
171.
171.A. Khmelinskii, M. Baiker, E. L. Kaijzel, J. Chen, and J. H. C. Reiber, “Articulated whole-body atlases for small animal image analysis: Construction and applications,” Mol. Imaging Biol. 13, 898910 (2011).
http://dx.doi.org/10.1007/s11307-010-0386-x
172.
172.R. Maroy, R. Boisgard, C. Comtat, B. Jego, and Y. Fontyn, “Quantitative organ time activity curve extraction from rodent PET images without anatomical prior,” Med. Phys. 37, 15071517 (2010).
http://dx.doi.org/10.1118/1.3327454
173.
173.Y. Su and K. I. Shoghi, “Single-input-dual-output modeling of image-based input function estimation,” Mol. Imaging Biol. 12, 286294 (2010).
http://dx.doi.org/10.1007/s11307-009-0273-5
174.
174.Y. Su, M. J. Welch, and K. I. Shoghi, “The application of maximum likelihood factor analysis (MLFA) with uniqueness constraints on dynamic cardiac microPET data,” Phys. Med. Biol. 52, 23132334 (2007).
http://dx.doi.org/10.1088/0031-9155/52/8/018
175.
175.Y. Zan, R. Boutchko, Q. Huang, B. Li, and K. Chen, “Fast direct estimation of the blood input function and myocardial time activity curve from dynamic SPECT projections via reduction in spatial and temporal dimensions,” Med. Phys. 40, 092503 (10pp.) (2013).
http://dx.doi.org/10.1118/1.4816944
176.
176.A. Kavanagh, A. Olivo, R. Speller, and B. Vojnovic, “Feasibility testing of a pre-clinical coded aperture phase contrast imaging configuration using a simple fast Monte Carlo simulator,” Biomed. Opt. Express 5, 93105 (2014).
http://dx.doi.org/10.1364/BOE.5.000093
177.
177.D. Yang, X. Chen, S. Ren, X. Qu, and J. Tian, “Influence investigation of a void region on modeling light propagation in a heterogeneous medium,” Appl. Opt. 52, 400408 (2013).
http://dx.doi.org/10.1364/AO.52.000400
178.
178.H. Shen and G. Wang, “A study on tetrahedron-based inhomogeneous Monte Carlo optical simulation,” Biomed. Opt. Express 2, 4457 (2011).
http://dx.doi.org/10.1364/BOE.2.000044
179.
179.H. Shen and G. Wang, “A tetrahedron-based inhomogeneous Monte Carlo optical simulator,” Phys. Med. Biol. 55, 947962 (2010).
http://dx.doi.org/10.1088/0031-9155/55/4/003
180.
180.D. Yang, X. Chen, Z. Peng, X. Wang, and J. Ripoll, “Light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities based on hybrid simplified spherical harmonics with radiosity model,” Biomed. Opt. Express 4, 22092223 (2013).
http://dx.doi.org/10.1364/BOE.4.002209
181.
181.Y. Lu and A. F. Chatziioannou, “A parallel adaptive finite element method for the simulation of photon migration with the radiative-transfer-based model,” Commun. Numer. Methods Eng. 25, 751770 (2009).
http://dx.doi.org/10.1002/cnm.1167
182.
182.W. Li, H. Yi, Q. Zhang, D. Chen, and J. Liang, “Extended finite element method with simplified spherical harmonics approximation for the forward model of optical molecular imaging,” Comput. Math. Methods Med. 2012, 110.
http://dx.doi.org/10.1155/2012/394374
183.
183.O. Lee, J. M. Kim, Y. Bresler, and J. C. Ye, “Compressive diffuse optical tomography: Noniterative exact reconstruction using joint sparsity,” IEEE Trans. Med. Imaging 30, 11291142 (2011).
http://dx.doi.org/10.1109/tmi.2011.2125983
184.
184.J. Chen and X. Intes, “Time-gated perturbation Monte Carlo for whole body functional imaging in small animals,” Opt. Express 17, 1956619579 (2009).
http://dx.doi.org/10.1364/OE.17.019566
185.
185.H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35, 48634871 (2008).
http://dx.doi.org/10.1118/1.2982138
186.
186.Q. Wu, J. Feng, K. Jia, and X. Wang, “Improved reconstruction quality of bioluminescent images by combining SP3 equations and bregman iteration method,” Comput. Math. Methods Med. 2013, 18.
http://dx.doi.org/10.1155/2013/767296
187.
187.M. A. Naser, M. S. Patterson, and J. W. Wong, “Self-calibrated algorithms for diffuse optical tomography and bioluminescence tomography using relative transmission images,” Biomed. Opt. Express 3, 27942808 (2012).
http://dx.doi.org/10.1364/BOE.3.002794
188.
188.X. He, J. Liang, X. Wang, J. Yu, and X. Qu, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 2482524841 (2010).
http://dx.doi.org/10.1364/OE.18.024825
189.
189.J. Yu, F. Liu, J. Wu, L. Jiao, and X. He, “Fast source reconstruction for bioluminescence tomography based on sparse regularization,” IEEE Trans. Biomed. Eng. 57, 25832586 (2010).
http://dx.doi.org/10.1109/tbme.2010.2059024
190.
190.X. Chen, D. Yang, X. Qu, H. Hu, and J. Liang, “Comparisons of hybrid radiosity-diffusion model and diffusion equation for bioluminescence tomography in cavity cancer detection,” J. Biomed. Opt. 17, 066015 (2012).
http://dx.doi.org/10.1117/1.jbo.17.6.066015
191.
191.M. A. Naser, M. S. Patterson, and J. W. Wong, “Algorithm for localized adaptive diffuse optical tomography and its application in bioluminescence tomography,” Phys. Med. Biol. 59, 20892109 (2014).
http://dx.doi.org/10.1088/0031-9155/59/8/2089
192.
192.G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: Simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol. 51, 20452053 (2006).
http://dx.doi.org/10.1088/0031-9155/51/8/006
193.
193.G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: A computer simulation feasibility study,” Phys. Med. Biol. 50, 42254241 (2005).
http://dx.doi.org/10.1088/0031-9155/50/17/021
194.
194.J. Yu, X. He, G. Geng, F. Liu, and L. C. Jiao, “Hybrid multilevel sparse reconstruction for a whole domain bioluminescence tomography using adaptive finite element,” Comput. Math. Methods Med. 2013, 111.
http://dx.doi.org/10.1155/2013/548491
195.
195.Y. Lv, J. Tian, W. Cong, G. Wang, and W. Yang, “Spectrally resolved bioluminescence tomography with adaptive finite element analysis: Methodology and simulation,” Phys. Med. Biol. 52, 44974512 (2007).
http://dx.doi.org/10.1088/0031-9155/52/15/009
196.
196.X. Wang, B. Zhang, X. Cao, F. Liu, and J. Luo, “Acceleration of early-photon fluorescence molecular tomography with graphics processing units,” Comput. Math. Methods Med. 2013, 19.
http://dx.doi.org/10.1155/2013/297291
197.
197.X. Liu, B. Zhang, J. Luo, and J. Bai, “Principal component analysis of dynamic fluorescence tomography in measurement space,” Phys. Med. Biol. 57, 27272742 (2012).
http://dx.doi.org/10.1088/0031-9155/57/9/2727
198.
198.S. B. Raymond, A. T. N. Kumar, D. A. Boas, and B. J. Bacskai, “Optimal parameters for near infrared fluorescence imaging of amyloid plaques in Alzheimer’s disease mouse models,” Phys. Med. Biol. 54, 62016216 (2009).
http://dx.doi.org/10.1088/0031-9155/54/20/011
199.
199.T. Correia, J. Aguirre, A. Sisniega, J. Chamorro-Servent, and J. Abascal, “Split operator method for fluorescence diffuse optical tomography using anisotropic diffusion regularisation with prior anatomical information,” Biomed. Opt. Express 2, 26322648 (2011).
http://dx.doi.org/10.1364/BOE.2.002632
200.
200.X. Liu, F. Liu, and J. Bai, “A linear correction for principal component analysis of dynamic fluorescence diffuse optical tomography images,” IEEE Trans. Biomed. Eng. 58, 16021611 (2011).
http://dx.doi.org/10.1109/tbme.2011.2106501
201.
201.J. Chen, V. Venugopal, and X. Intes, “Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates,” Biomed. Opt. Express 2, 871886 (2011).
http://dx.doi.org/10.1364/BOE.2.000871
202.
202.A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, and S. R. Cherry, “Excitation spectroscopy in multispectral optical fluorescence tomography: Methodology, feasibility and computer simulation studies,” Phys. Med. Biol. 54, 46874704 (2009).
http://dx.doi.org/10.1088/0031-9155/54/15/004
203.
203.J. Dutta, S. Ahn, A. A. Joshi, and R. M. Leahy, “Illumination pattern optimization for fluorescence tomography: Theory and simulation studies,” Phys. Med. Biol. 55, 29612982 (2010).
http://dx.doi.org/10.1088/0031-9155/55/10/011
204.
204.A. Joshi, J. C. Rasmussen, E. M. Sevick-Muraca, T. A. Wareing, and J. McGhee, “Radiative transport-based frequency-domain fluorescence tomography,” Phys. Med. Biol. 53, 20692088 (2008).
http://dx.doi.org/10.1088/0031-9155/53/8/005
205.
205.J. F. Perez-Juste Abascal, J. Aguirre, J. Chamorro-Servent, M. Schweiger, and S. Arridge, “Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data,” J. Biomed. Opt. 17, 036013 (2012).
http://dx.doi.org/10.1117/1.jbo.17.3.036013
206.
206.G. Zhang, F. Liu, H. Pu, W. He, and J. Luo, “A direct method with structural priors for imaging pharmacokinetic parameters in dynamic fluorescence molecular tomography,” IEEE Trans. Biomed. Eng. 61, 986990 (2014).
http://dx.doi.org/10.1109/tbme.2013.2292714
207.
207.Y. S. Yeom, J. H. Jeong, M. C. Han, and C. H. Kim, “Tetrahedral-mesh-based computational human phantom for fast Monte Carlo dose calculations,” Phys. Med. Biol. 59, 31733185 (2014).
http://dx.doi.org/10.1088/0031-9155/59/12/3173
208.
208.M. C. Han, C. H. Kim, J. H. Jeong, Y. S. Yeom, and S. Kim, “DagSolid: A new geant4 solid class for fast simulation in polygon-mesh geometry,” Phys. Med. Biol. 58, 45954609 (2013).
http://dx.doi.org/10.1088/0031-9155/58/13/4595
209.
209.S. Stojadinovic et al., “MicroRT—Small animal conformal irradiator,” Med. Phys. 34, 47064716 (2007).
http://dx.doi.org/10.1118/1.2799887
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/43/1/10.1118/1.4937598
Loading
/content/aapm/journal/medphys/43/1/10.1118/1.4937598
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/43/1/10.1118/1.4937598
2015-12-22
2016-09-27

Abstract

The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animalmodels in preclinical research. Since the early 1990s, over 120 realistic computational animalmodels have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography,positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animalmodels with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animalmodels in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/43/1/1.4937598.html;jsessionid=b9A6UEYs_qMXrJXcTAZ8-CbL.x-aip-live-03?itemId=/content/aapm/journal/medphys/43/1/10.1118/1.4937598&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/43/1/10.1118/1.4937598&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/43/1/10.1118/1.4937598'
Right1,Right2,Right3,