Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/43/1/10.1118/1.4938582
1.
1.S. S. Korreman, “Motion in radiotherapy: Photon therapy,” Phys. Med. Biol. 57(23), R161R191 (2012).
http://dx.doi.org/10.1088/0031-9155/57/23/R161
2.
2.P. J. Keall, G. S. Mageras, J. M. Balter, R. S. Emery, K. M. Forster, S. B. Jiang, and J. M. Kapatoes, “The management of respiratory motion in radiation oncology report of AAPM Task Group 76,” Med. Phys. 33(10), 38743900 (2006).
http://dx.doi.org/10.1118/1.2349696
3.
3.M. Hoogeman, J. B. Prévost, J. Nuyttens, J. Pöll, P. Levendag, and B. Heijmen, “Clinical accuracy of the respiratory tumor tracking system of the cyberknife: Assessment by analysis of log files,” Int. J. Radiat. Oncol., Biol., Phys. 74(1), 297303 (2009).
http://dx.doi.org/10.1016/j.ijrobp.2008.12.041
4.
4.Y. Seppenwoolde, R. I. Berbeco, S. Nishioka, H. Shirato, and B. Heijmen, “Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: A simulation study,” Med. Phys. 34(7), 27742784 (2007).
http://dx.doi.org/10.1118/1.2739811
5.
5.D. Fontanarosa, S. van der Meer, J. Bamber, E. Harris, T. O’Shea, and F. Verhaegen, “Review of ultrasound image guidance in external beam radiotherapy: I. Treatment planning and inter-fraction motion management,” Phys. Med. Biol. 60(3), R77R114 (2015).
http://dx.doi.org/10.1088/0031-9155/60/3/R77
6.
6.M. J. Murphy, J. Balter, S. Balter, J. A. BenComo, Jr., I. J. Das, S. B. Jiang, and F. F. Yin, “The management of imaging dose during image-guided radiotherapy: Report of the AAPM Task Group 75,” Med. Phys. 34(10), 40414063 (2007).
http://dx.doi.org/10.1118/1.2775667
7.
7.M. A. L. Bell, B. C. Byram, E. J. Harris, P. M. Evans, and J. C. Bamber, “In vivo liver tracking with a high volume rate 4D ultrasound scanner and a 2D matrix array probe,” Phys. Med. Biol. 57(5), 13591374 (2012).
http://dx.doi.org/10.1088/0031-9155/57/5/1359
8.
8.C. F. Dietrich, A. Ignee, J. Trojan, C. Fellbaum, and G. Schuessler, “Improved characterisation of histologically proven liver tumours by contrast enhanced ultrasonography during the portal venous and specific late phase of SHU 508A,” Gut 53(3), 401405 (2004).
http://dx.doi.org/10.1136/gut.2003.026260
9.
9.J. Schlosser, K. Salisbury, and D. Hristov, “Image-based approach to respiratory gating for liver radiotherapy using a telerobotic ultrasound system,” Int. J. Radiat. Oncol., Biol., Phys. 81(2), S122 (2011).
http://dx.doi.org/10.1016/j.ijrobp.2011.06.250
10.
10.E. J. Harris, N. R. Miller, J. C. Bamber, J. R. N. Symonds-Tayler, and P. M. Evans, “Speckle tracking in a phantom and feature-based tracking in liver in the presence of respiratory motion using 4D ultrasound,” Phys. Med. Biol. 55(12), 33633380 (2010).
http://dx.doi.org/10.1088/0031-9155/55/12/007
11.
11.V. De Luca, M. Tschannen, G. Székely, and C. Tanner, “A learning-based approach for fast and robust vessel tracking in long ultrasound sequences,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013 (Springer Berlin Heidelberg, 2013), pp. 518525.
12.
12.M. A. L. Bell, H. T. Sen, I. Iordachita, P. Kazanzides, and J. Wong, “In vivo reproducibility of robotic probe placement for a novel ultrasound-guided radiation therapy system,” J. Med. Imaging 1(2), 025001 (2014).
http://dx.doi.org/10.1117/1.JMI.1.2.025001
13.
13.M. von Siebenthal, G. Székely, A. J. Lomax, and P. C. Cattin, “Systematic errors in respiratory gating due to intrafraction deformations of the liver,” Med. Phys. 34(9), 36203629 (2007).
http://dx.doi.org/10.1118/1.2767053
14.
14.A. Gastounioti, S. Golemati, J. Stoitsis, and K. S. Nikita, “Comparison of Kalman-filter-based approaches for block matching in arterial wall motion analysis from B-mode ultrasound,” Meas. Sci. Technol. 22(11), 114008 (2011).
http://dx.doi.org/10.1088/0957-0233/22/11/114008
15.
15.R. E. Kalman, “A new approach to linear filtering and prediction problems,” J. Basic Eng. 82(1), 3545 (1960).
http://dx.doi.org/10.1115/1.3662552
16.
16.R. Penoyer, “The alpha-beta filter,” C. Users J. 11(7), 7386 (1993).
17.
17.A. H. Hasan and A. N. Grachev, “Adaptive α-β-filter for target tracking using real time genetic algorithm,” J. Electr. Control Eng. (JECE) 3, 3238 (2013).
18.
18.K. Saho, “Fundamental properties and optimal gains of a steady-state velocity measured α-β tracking filter,” Adv. Remote Sens. 3, 6176 (2014).
http://dx.doi.org/10.4236/ars.2014.32006
20.
20.T. R. Benedict and G. W. Bordner, “Synthesis of an optimal set of radar track-while-scan smoothing equations,” in IRE Transactions On Automatic Control (The Institute of Radio Engineers, New York, NY, 1962), pp. 2732.
21.
21.G. C. Sharp, S. B. Jiang, S. Shimizu, and H. Shirato, “Prediction of respiratory tumour motion for real-time image-guided radiotherapy,” Phys. Med. Biol. 49(3), 425440 (2004).
http://dx.doi.org/10.1088/0031-9155/49/3/006
22.
22.S. J. Lee and Y. Motai, “Prediction and classification of respiratory motion,” in Studies in Computational Intelligence (Springer-Verlag, Berlin, Heidelberg, 2014), p. 525.
23.
23.A. E. Lujan, E. W. Larsen, J. M. Balter, and R. K. Ten Haken, “A method for incorporating organ motion due to breathing into 3D dose calculations,” Med. Phys. 26(5), 715720 (1999).
http://dx.doi.org/10.1118/1.598577
24.
24.B. J. Geiman, L. N. Bohs, M. E. Anderson, S. M. Breit, and G. E. Trahey, “A novel interpolation strategy for estimating subsample speckle motion,” Phys. Med. Biol. 45(6), 15411552 (2000).
http://dx.doi.org/10.1088/0031-9155/45/6/310
25.
25.I. Matthews, T. Ishikawa, and S. Baker, “The template update problem,” IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 810815 (2004).
http://dx.doi.org/10.1109/TPAMI.2004.16
26.
26.M. M. Doyley, J. C. Bamber, T. Shiina, and M. O. Leach, “Reconstruction of elastic modulus distribution from envelope detected B-mode data,” IEEE Ultrasonics Symposium (IEEE, 1996), p. 1611.
27.
27.T. Varghese and J. Ophir, “Characterization of elastographic noise using the envelope of echo signals,” Ultrasound Med. Biol. 24(4), 543555 (1998).
http://dx.doi.org/10.1016/S0301-5629(98)00008-8
28.
28.Y. T. Oh, Y. Hwang, J. B. Kim, W. C. Bang, J. D. Kim, and C. Y. Kim, “Patient-specific liver deformation modeling for tumor tracking,” Proc. SPIE 8671, 86711N (2013).
http://dx.doi.org/10.1117/12.2007884
29.
29.C. Weon, W. H. Nam, D. Lee, J. Y. Lee, and J. B. Ra, “Position tracking of moving liver lesion based on real-time registration between 2D ultrasound and 3D preoperative images,” Med. Phys. 42(1), 335347 (2015).
http://dx.doi.org/10.1118/1.4903945
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/43/1/10.1118/1.4938582
Loading
/content/aapm/journal/medphys/43/1/10.1118/1.4938582
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/43/1/10.1118/1.4938582
2015-12-31
2016-10-01

Abstract

Ultrasound-based motion estimation is an expanding subfield of image-guided radiation therapy. Although ultrasound can detect tissue motion that is a fraction of a millimeter, its accuracy is variable. For controlling linear accelerator tracking and gating, ultrasound motion estimates must remain highly accurate throughout the imagingsequence. This study presents a temporal regularization method for correlation-based template matching which aims to improve the accuracy of motion estimates.

Liverultrasoundsequences (15–23 Hz imaging rate, 2.5–5.5 min length) from ten healthy volunteers under free breathing were used. Anatomical features (blood vessels) in each sequence were manually annotated for comparison with normalized cross-correlation based template matching. Five sequences from a Siemens Acuson™ scanner were used for algorithm development (training set). Results from incremental tracking (IT) were compared with a temporal regularization method, which included a highly specific similarity metric and state observer, known as the filter/similarity threshold (ABST). A further five sequences from an Elekta Clarity™ system were used for validation, without alteration of the tracking algorithm (validation set).

Overall, the ABST method produced marked improvements in vessel tracking accuracy. For the training set, the mean and 95th percentile (95%) errors (defined as the difference from manual annotations) were 1.6 and 1.4 mm, respectively (compared to 6.2 and 9.1 mm, respectively, for IT). For each sequence, the use of the state observer leads to improvement in the 95% error. For the validation set, the mean and 95% errors for the ABST method were 0.8 and 1.5 mm, respectively.

Ultrasound-based motion estimation has potential to monitor liver translation over long time periods with high accuracy. Nonrigid motion (strain) and the quality of the ultrasound data are likely to have an impact on tracking performance. A future study will investigate spatial uniformity of motion and its effect on the motion estimation errors.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/43/1/1.4938582.html;jsessionid=UooOq6jjs8PL7ZmpXIqe7cPx.x-aip-live-03?itemId=/content/aapm/journal/medphys/43/1/10.1118/1.4938582&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/43/1/10.1118/1.4938582&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/43/1/10.1118/1.4938582'
Right1,Right2,Right3,