Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/43/1/10.1118/1.4939082
1.
1.R. A. Rutherford, B. R. Pullan, and I. Isherwood, “Measurement of effective atomic number and electron density using an EMI scanner,” Neuroradiology 11, 1521 (1976).
http://dx.doi.org/10.1007/BF00327253
2.
2.M. M. Goodsitt, P. Hoover, M. S. Veldee, and S. L. Hsueh, “The composition of bone marrow for a dual-energy quantitative computed tomography technique,” Invest. Radiol. 29, 695704 (1994).
http://dx.doi.org/10.1097/00004424-199407000-00006
3.
3.C. E. Cann, “Quantitative CT for determination of bone mineral density: A review,” Radiology 166(2), 509522 (1988).
http://dx.doi.org/10.1148/radiology.166.2.3275985
4.
4.T. R. C. Johnson, B. Krauß, M. Sedlmair, M. Grasruck, H. Bruder, D. Morhard, C. Fink, S. Weckbach, M. Lenhard, B. Schmidt, T. Flohr, M. F. Reiser, and C. R. Becker, “Material differentiation by dual energy CT: Initial experience,” Eur. Radiol. 17(6), 15101517 (2007).
http://dx.doi.org/10.1007/s00330-006-0517-6
5.
5.J. D. Evans, B. R. Whiting, J. A. O’Sullivan, D. G. Politte, P. H. Klahr, Y. Yu, and J. F. Williamson, “Prospects for in vivo estimation of photon linear attenuation coefficients using postprocessing dual-energy CT imaging on a commercial scanner: Comparison of analytic and polyenergetic statistical reconstruction algorithms,” Med. Phys. 40(12), 121914 (16pp.) (2013).
http://dx.doi.org/10.1118/1.4828787
6.
6.M. Yang, G. Virshup, J. Clayton, X. R. Zhu, R. Mohan, and L. Dong, “Theoretical variance analysis of single- and dual-energy computed tomography methods for calculating proton stopping power ratios of biological tissues,” Phys. Med. Biol. 55, 13431362 (2010).
http://dx.doi.org/10.1088/0031-9155/55/5/006
7.
7.M. Bazalova, J. F. Carrier, L. Beaulieu, and F. Verhaegen, “Dual-energy CT-based material extraction for tissue segmentation in Monte Carlo dose calculations,” Phys. Med. Biol. 53, 24392456 (2008).
http://dx.doi.org/10.1088/0031-9155/53/9/015
8.
8.U. Schneider, P. Pemler, J. Besserer, E. Pedroni, A. Lomax, and B. Kaser-Hotz, “Patient specific optimization of the relation between CT-Hounsfield units and proton stopping power with proton radiography,” Med. Phys. 32(1), 195199 (2005).
http://dx.doi.org/10.1118/1.1833041
9.
9.U. Schneider, E. Pedroni, and A. Lomax, “The calibration of CT Hounsfield units for radiotherapy treatment planning,” Phys. Med. Biol. 41, 111124 (1996).
http://dx.doi.org/10.1088/0031-9155/41/1/009
10.
10.M. Torikoshi, T. Tsunoo, M. Sasaki, M. Endo, Y. Noda, Y. Ohno, T. Kohno, K. Hyodo, K. Uesugi, and N. Yagi, “Electron density measurement with dual-energy x-ray CT using synchrotron radiation,” Phys. Med. Biol. 48, 673685 (2003).
http://dx.doi.org/10.1088/0031-9155/48/5/308
11.
11.A. E. Bourque, J. F. Carrier, and H. Bouchard, “A stoichiometric calibration method for dual energy computed tomography,” Phys. Med. Biol. 59, 20592088 (2014).
http://dx.doi.org/10.1088/0031-9155/59/8/2059
12.
12.N. Hünemohr, B. Krauss, C. Tremmel, B. Ackermann, O. Jäkel, and S. Greilich, “Experimental verification of ion stopping power prediction from dual energy CT data in tissue surrogates,” Phys. Med. Biol. 59, 8396 (2014).
http://dx.doi.org/10.1088/0031-9155/59/1/83
13.
13.N. Hünemohr, B. Krauss, J. Dinkel, C. Gillmann, B. Ackermann, O. Jäkel, and S. Greilich, “Ion range estimation by using dual energy computed tomography,” Z. Med. Phys. 23(4), 300313 (2013).
http://dx.doi.org/10.1016/j.zemedi.2013.03.001
14.
14.G. Landry, K. Parodi, J. E. Wilderger, and F. Verhaegen, “Deriving concentrations of oxygen and carbon in human tissues using single- and dual-energy CT for ion therapy applications,” Phys. Med. Biol. 58, 50295048 (2013).
http://dx.doi.org/10.1088/0031-9155/58/15/5029
15.
15.N. Hünemohr, H. Paganetti, S. Greilich, O. Jäkel, and J. Seco, “Tissue decomposition from dual energy CT data for MC based dose calculation in particle therapy,” Med. Phys. 41, 061714 (14pp.) (2014).
http://dx.doi.org/10.1118/1.4875976
16.
16.J. F. Williamson, S. Li, S. Devic, B. R. Whiting, and F. A. Lerma, “On two-parameter models of photon cross sections: Application to dual-energy CT imaging,” Med. Phys. 33, 41154129 (2006).
http://dx.doi.org/10.1118/1.2349688
17.
17.G. H. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35, 660663 (2008).
http://dx.doi.org/10.1118/1.2836423
18.
18.J. D. Evans, B. R. Whiting, D. G. Politte, J. A. O’Sullivan, P. F. Klahr, and J. F. Williamson, “Experimental implementation of a polyenergetic statistical reconstruction algorithm for a commercial fan-beam CT scanner,” Phys. Med. 29, 500512 (2013).
http://dx.doi.org/10.1016/j.ejmp.2012.12.005
19.
19.Y. Chen, J. A. O’Sullivan, D. G. Politte, J. D. Evans, D. Han, B. R. Whiting, and J. F. Williamson, “Line integral alternating minimization algorithm for dual-energy x-ray CT image reconstruction,” IEEE Trans. Med. Imaging PP, 1 (2015), see http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7298440.
http://dx.doi.org/10.1109/TMI.2015.2490658
20.
20.R. E. Alvarez and A. Macovski, “Energy-selective reconstructions in x-ray computerized tomography,” Phys. Med. Biol. 21(5), 733744 (1976).
http://dx.doi.org/10.1088/0031-9155/21/5/002
21.
21.D. Han, A. Sampson, D. Politte, J. O’Sullivan, J. Siebers, and J. F. Williamson, “Accuracy of dual-energy CT photon cross-section mapping using a non-separable two parameter cross-section model,” Med. Phys. 39(6), 3989 (2012).
http://dx.doi.org/10.1118/1.4736275
22.
22.H. Bethe, “Zur theorie des durchgangs schneller korpuskularstrahlen durch materie,” Ann. Phys. 397, 325400 (1930).
http://dx.doi.org/10.1002/andp.19303970303
23.
23.ICRU, “Photon electron proton and neutron interaction data for body tissues,” Report No. 46 (ICRU, Bethesda, MD, 1992).
24.
24.ICRU, “Tissue substitutes in radiation dosimetry and measurement,” Report No. 44 (ICRU, Bethesda, MD, 1989).
25.
25.ICRU, “Stopping powers for electrons and positrons,” Report No. 37 (ICRU, Bethesda, MD,1984).
26.
26.D. R. Warren, M. Partridge, M. A. Hill, and K. Peach, “Improved calibration of mass stopping power in low density tissue for a proton pencil beam algorithm,” Phys. Med. Biol. 60, 42434261 (2015).
http://dx.doi.org/10.1088/0031-9155/60/11/4243
27.
27.R. A. Rutherford, B. R. Pullan, and I. Isherwood, “Calibration and response of an EMI scanner,” Neuroradiology 11, 713 (1976).
http://dx.doi.org/10.1007/BF00327252
28.
28.J. B. Weaver and A. L. Huddleston, “Attenuation coefficients of body tissues using principal-components analysis,” Med. Phys. 12(1), 4045 (1985).
http://dx.doi.org/10.1118/1.595759
29.
29.M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, XCOM: Photon Cross Section Database, Version 1.5, National Institute of Standards and Technology, Gaithersburg, MD,2010.
30.
30.D. R. White, H. Q. Woodard, and S. M. Hammond, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol. 60, 907913 (1987).
http://dx.doi.org/10.1259/0007-1285-60-717-907
31.
31.H. Q. Woodard and D. R. White, “The composition of body tissues,” Br. J. Radiol. 59, 12091219 (1986).
http://dx.doi.org/10.1259/0007-1285-59-708-1209
32.
32.D. R. White, E. M. Widdowson, H. Q. Woodard, and J. W. T. Dickerson, “The composition of body tissues. (II) Fetus to young adult,” Br. J. Radiol. 64, 149159 (1991).
http://dx.doi.org/10.1259/0007-1285-64-758-149
33.
33.J. Brožek, F. Grande, J. T. Anderson, and A. Keys, “Densitometric analysis of body composition: Revision of some quantitative assumptions,” Ann. N. Y. Acad. Sci. 110, 113140 (1963).
http://dx.doi.org/10.1111/j.1749-6632.1963.tb17079.x
34.
34.B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Technical Note 1297 (U.S. Government Printing Office, Washington, DC, 1994).
35.
35.ICRU, “Stopping powers and ranges for protons and alpha-particles,” Report No. 49 (ICRU, Bethesda, MD, 1993).
36.
36.A. Besemer, H. Paganetti, and B. Bednarz, “Clinical impact of uncertainties in the mean excitation energy of human tissues during proton therapy,” Phys. Med. Biol. 58, 887902 (2013).
http://dx.doi.org/10.1088/0031-9155/58/4/887
37.
37.P. Andreo, “On the clinical spatial resolution achievable with protons and heavier charged particle radiotherapy beams,” Phys. Med. Biol. 54, N205N215 (2009).
http://dx.doi.org/10.1088/0031-9155/54/11/N01
38.
38.G. Landry, J. Seco, M. Gaudreault, and F. Verhaegen, “Deriving effective atomic numbers from DECT based on a parameterization of the ratio of high and low linear attenuation coefficients,” Phys. Med. Biol. 58, 68516866 (2013).
http://dx.doi.org/10.1088/0031-9155/58/19/6851
39.
39.M. Saito, “Potential of dual-energy subtraction for converting CT numbers to electron density based on a single linear relationship,” Med. Phys. 39(4), 20212030 (2012).
http://dx.doi.org/10.1118/1.3694111
40.
40.M. Cristy, “Active bone marrow distribution as a function of age in humans,” Phys. Med. Biol. 26, 389400 (1981).
http://dx.doi.org/10.1088/0031-9155/26/3/003
41.
41.P. M. Shikhaliev and S. G. Fritz, “Photon counting spectral CT versus conventional CT: Comparative evaluation for breast imaging application,” Phys. Med. Biol. 56, 19051930 (2011).
http://dx.doi.org/10.1088/0031-9155/56/7/001
42.
42.J. P. Schlomka, E. Roessl, R. Dorscheid, S. Dill, G. Martens, T. Istel, C. Bäumer, C. Herrmann, R. Steadman, G. Zeitler, A. Livne, and R. Proska, “Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography,” Phys. Med. Biol. 53, 40314047 (2008).
http://dx.doi.org/10.1088/0031-9155/53/15/002
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/43/1/10.1118/1.4939082
Loading
/content/aapm/journal/medphys/43/1/10.1118/1.4939082
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/43/1/10.1118/1.4939082
2016-01-08
2016-09-29

Abstract

To evaluate the accuracy and robustness of a simple, linear, separable, two-parameter model (basis vector model, BVM) in mapping protonstopping powers dual energy computed tomography (DECT) imaging.

The BVM assumes that photon cross sections (attenuation coefficients) of unknown materials are linear combinations of the corresponding radiological quantities of dissimilar basis substances (i.e., polystyrene, CaCl aqueous solution, and water). The authors have extended this approach to the estimation of electron density and mean excitation energy, which are required parameters for computing protonstopping powers via the Bethe–Bloch equation. The authors compared the stopping power estimation accuracy of the BVM with that of a nonlinear, nonseparable photon cross section Torikoshi parametric fit model (VCU tPFM) as implemented by the authors and by Yang [“Theoretical variance analysis of single- and dual-energy computed tomography methods for calculating protonstopping power ratios of biological tissues,” Phys. Med. Biol. , 1343–1362 (2010)]. Using an idealized monoenergetic DECT imaging model, proton ranges estimated by the BVM, VCU tPFM, and Yang tPFM were compared to International Commission on Radiation Units and Measurements (ICRU) published reference values. The robustness of the stopping power prediction accuracy of tissue composition variations was assessed for both of the BVM and VCU tPFM. The sensitivity of accuracy to CTimageuncertainty was also evaluated.

Based on the authors’ idealized, error-free DECT imaging model, the root-mean-square error of BVM protonstopping power estimation for 175 MeV protons relative to ICRU reference values for 34 ICRU standard tissues is 0.20%, compared to 0.23% and 0.68% for the Yang and VCU tPFM models, respectively. The range estimation errors were less than 1 mm for the BVM and Yang tPFM models, respectively. The BVM estimation accuracy is not dependent on tissue type and proton energy range. The BVM is slightly more vulnerable to CTimage intensity uncertainties than the tPFM models. Both the BVM and tPFM prediction accuracies were robust to uncertainties of tissue composition and independent of the choice of reference values. This reported accuracy does not include the impacts of -value uncertainties and imaging artifacts and may not be achievable on current clinical CT scanners.

The protonstopping power estimation accuracy of the proposed linear, separable BVM model is comparable to or better than that of the nonseparable tPFM models proposed by other groups. In contrast to the tPFM, the BVM does not require an iterative solving for effective atomic number and electron density at every voxel; this improves the computational efficiency of DECT imaging when iterative, model-based image reconstruction algorithms are used to minimize noise and systematic imaging artifacts of CTimages.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/43/1/1.4939082.html;jsessionid=VHpjK_zkJ5y-_C9FPVPQIjD1.x-aip-live-03?itemId=/content/aapm/journal/medphys/43/1/10.1118/1.4939082&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/43/1/10.1118/1.4939082&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/43/1/10.1118/1.4939082'
Right1,Right2,Right3,