Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/43/2/10.1118/1.4939666
1.
1.K. E. Stump, L. A. DeWerd, D. A. Rudman, and S. A. Schima, “Active radiometric calorimeter for absolute calibration of radioactive sources,” Rev. Sci. Instrum. 76, 033504 (2005).
http://dx.doi.org/10.1063/1.1867032
2.
2.R. Collé, “Classical radionuclidic calorimetry,” Metrologia 44, S118S126 (2007).
http://dx.doi.org/10.1088/0026-1394/44/4/s15
3.
3.R. Collé and B. Zimmerman, “A dual-compensated cryogenic microcalorimeter for radioactivity standardizations,” Appl. Radiat. Isot. 56, 223230 (2002).
http://dx.doi.org/10.1016/S0969-8043(01)00192-0
4.
4.L. Beaulieu, Å. C. Tedgren, J. F. Carrier, S. D. Davis, F. Mourtada, M. J. Rivard, R. M. Thomson, F. Verhaegen, T. A. Wareing, and J. F. Williamson, “Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: Current status and recommendations for clinical implementation,” Med. Phys. 39, 62086236 (2012).
http://dx.doi.org/10.1118/1.4747264
5.
5.J. G. H. Sutherland, K. M. Furutani, Y. I. Garces, and R. M. Thomson, “Model-based dose calculations for 125I lung brachytherapy,” Med. Phys. 39, 43654377 (2012).
http://dx.doi.org/10.1118/1.4729737
6.
6.S. Mashouf, E. Lechtman, P. Lai, B. M. Keller, A. Karotki, D. J. Beachey, and J. P. Pignol, “Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images,” Phys. Med. Biol. 59, 53055316 (2014).
http://dx.doi.org/10.1088/0031-9155/59/18/5305
7.
7.J. F. Williamson, R. S. Baker, and Z. Li, “A convolution algorithm for brachytherapy dose computations in heterogeneous geometries,” Med. Phys. 18, 12561265 (1991).
http://dx.doi.org/10.1118/1.596601
8.
8.J. F. Carrier, M. D’Amours, F. Verhaegen, B. Reniers, A. G. Martin, É. Vigneault, and L. Beaulieu, “Postimplant dosimetry using a Monte Carlo dose calculation engine: A new clinical standard,” Int. J. Radiat. Oncol., Biol., Phys. 68, 11901198 (2007).
http://dx.doi.org/10.1016/j.ijrobp.2007.02.036
9.
9.A. Sampson, Y. Le, and J. F. Williamson, “Fast patient-specific Monte Carlo brachytherapy dose calculations via the correlated sampling variance reduction technique,” Med. Phys. 39, 10581068 (2012).
http://dx.doi.org/10.1118/1.3679018
10.
10.H. Hedtjärn, G. A. Carlsson, and J. F. Williamson, “Accelerated Monte Carlo based dose calculations for brachytherapy planning using correlated sampling,” Phys. Med. Biol. 47, 351376 (2002).
http://dx.doi.org/10.1088/0031-9155/47/3/301
11.
11.S. Hissoiny, B. Ozell, P. Després, and J. F. Carrier, “Validation of GPUMCD for low-energy brachytherapy seed dosimetry,” Med. Phys. 38, 41014107 (2011).
http://dx.doi.org/10.1118/1.3598441
12.
12.J. Richardson, “A calorimeter for the nondestructive assay of tritium-contaminated samples,” IEEE Trans. Nucl. Sci. 47, 854859 (2000).
http://dx.doi.org/10.1109/23.856530
13.
13.J. Daures and A. Ostrowsky, “New constant-temperature operating mode for graphite calorimeter at LNE-LNHB,” Phys. Med. Biol. 50, 40354052 (2005).
http://dx.doi.org/10.1088/0031-9155/50/17/008
14.
14.J. Witzani, K. Duftschmid, C. Strachotinsky, and A. Leitner, “A graphite absorbed-dose calorimeter in the quasi-isothermal mode of operation,” Metrologia 20, 7379 (1984).
http://dx.doi.org/10.1088/0026-1394/20/3/001
15.
15.See supplementary material at http://dx.doi.org/10.1118/1.4939666 for further details regarding the calorimeter design and construction.[Supplementary Material]
16.
16.K. Ängstrom, “The quantitative determination of radiant heat by the method of electrical compensation,” Phys. Rev. Ser. I 1, 365372 (1894).
http://dx.doi.org/10.1103/PhysRevSeriesI.1.365
17.
17. In this paper, certain commercially available products are referred to by name. These references are for informational purposes only and imply neither endorsement by the ADCL nor that these products are the best or only products available for the purpose.
18.
18.J. Ekin, Experimental Techniques for Cryostat Design, Material Properties and Superconductor Critical-Current Testing (Oxford University Press, Oxford, 2006).
19.
19.D. L. Rule, D. R. Smith, and L. L. Sparks, “Thermal conductivity of a polymide film between 4.2 and 300K, with and without alumina particles as filler,” Technical Report SSC-N-734 (NISTIR, 1990).
20.
20.J. McTaggart and G. Slack, “Thermal conductivity of general electric no. 7031 varnish,” Cryogenics 9, 384385 (1969).
http://dx.doi.org/10.1016/0011-2275(69)90019-8
21.
21.E. R. Canavan and J. G. Tuttle, “Thermal conductivity and specific heat measurements of candidate structural materials for the JWST optical bench,” AIP Conf. Proc. 824, 233240 (2006).
http://dx.doi.org/10.1063/1.2192356
22.
22.M. M. Kreitman, “Low temperature thermal conductivity of several greases,” Rev. Sci. Instrum. 40, 15621565 (1969).
http://dx.doi.org/10.1063/1.1683862
23.
23.X-5 Monte Carlo Team, “ mcnp—A general Monte Carlo n-particle transport code, version 5,” Technical Report LA-UR-03-1987, Los Alamos National Laboratory, 2003.
24.
24.M. C. White, “Further notes on MCPLIB03/04 and new MCPLIB63/84 Compton broadening data for all versions of mcnp5,” Technical Report LA-UR-12-00018, Los Alamos National Laboratory, 2012.
25.
25.D. Cullen, J. Hubbell, and L. Kissel, “EPDL97: The evaluated photon data library,” Technical Report UCRL-50400, Lawrence Livermore National Laboratory, 1997, Vol. 6, Rev. 5.
26.
26.J. A. Halbleib, R. P. Kensek, T. A. Mehlhorn, G. D. Valdez, S. M. Seltzer, and M. J. Berger, “ITS version 3.0: Integrated tiger series of coupled electron/photon Monte Carlo transport codes,” Technical Report SAND91-1634, Sandia National Laboratories, 1992.
27.
27.J. Dolan, Z. Li, and J. F. Williamson, “Monte Carlo and experimental dosimetry of an 125I brachytherapy seed,” Med. Phys. 33, 46754684 (2006).
http://dx.doi.org/10.1118/1.2388158
28.
28.K. T. Sowards and A. S. Meigooni, “A Monte Carlo evaluation of the dosimetric characteristics of the Best® model 2301 125I brachytherapy source,” Appl. Radiat. Isot. 57, 327333 (2002).
http://dx.doi.org/10.1016/S0969-8043(02)00124-0
29.
29.M. J. Rivard, B. M. Coursey, L. A. DeWerd, W. F. Hanson, M. S. Huq, G. S. Ibbott, M. G. Mitch, R. Nath, and J. F. Williamson, “Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations,” Med. Phys. 31, 633674 (2004).
http://dx.doi.org/10.1118/1.1646040
30.
30.R. M. Kennedy, S. D. Davis, J. A. Micka, and L. A. DeWerd, “Experimental and Monte Carlo determination of the TG-43 dosimetric parameters for the model 9011 THINSeed™ brachytherapy source,” Med. Phys. 37, 16811688 (2010).
http://dx.doi.org/10.1118/1.3360899
31.
31.S. M. Seltzer, P. J. Lamperti, R. Loevinger, M. G. Mitch, J. T. Weaver, and B. M. Coursey, “New national air-kerma-strength standards for 125I and 103Pd brachytherapy seeds,” J. Res. Natl. Inst. Stand. Technol. 108, 337358 (2003).
http://dx.doi.org/10.6028/jres.108.030
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/43/2/10.1118/1.4939666
Loading
/content/aapm/journal/medphys/43/2/10.1118/1.4939666
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/43/2/10.1118/1.4939666
2016-01-14
2016-09-25

Abstract

Energy-based source strength metrics may find use with model-based dose calculation algorithms, but no instruments exist that can measure the energy emitted from low-dose rate (LDR) sources. This work developed a calorimetric technique for measuring the power emitted from encapsulated low-dose rate, photon-emitting brachytherapy sources. This quantity is called emitted power (EP). The measurement methodology, instrument design and performance, and EP measurements made with the calorimeter are presented in this work.

A calorimeter operating with a liquid helium thermal sink was developed to measure EP from LDR brachytherapy sources. The calorimeter employed an electrical substitution technique to determine the power emitted from the source. The calorimeter’s performance and thermal system were characterized. EP measurements were made using four 125I sources with air-kerma strengths ranging from 2.3 to 5.6 U and corresponding EPs of 0.39–0.79 W, respectively. Three Best Medical 2301 sources and one Oncura 6711 source were measured. EP was also computed by converting measured air-kerma strengths to EPs through Monte Carlo-derived conversion factors. The measured EP and derived EPs were compared to determine the accuracy of the calorimetermeasurement technique.

The calorimeter had a noise floor of 1–3 nW and a repeatability of 30–60 nW. The calorimeter was stable to within 5 nW over a 12 h measurement window. All measured values agreed with derived EPs to within 10%, with three of the four sources agreeing to within 4%. Calorimetermeasurements had uncertainties ranging from 2.6% to 4.5% at the = 1 level. The values of the derived EPs had uncertainties ranging from 2.9% to 3.6% at the = 1 level.

A calorimeter capable of measuring the EP from LDR sources has been developed and validated for 125I sources with EPs between 0.43 and 0.79 W.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/43/2/1.4939666.html;jsessionid=c65pi4MMVRrAuppQ0eEgROtg.x-aip-live-02?itemId=/content/aapm/journal/medphys/43/2/10.1118/1.4939666&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/43/2/10.1118/1.4939666&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/43/2/10.1118/1.4939666'
Right1,Right2,Right3,