Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/43/3/10.1118/1.4941014
1.
1.H. Zaidi and A. D. Guerra, “An outlook on future design of hybrid PET/MRI systems,” Med. Phys. 38(10), 56675689 (2011).
http://dx.doi.org/10.1118/1.3633909
2.
2.J. A. Disselhorst, I. Bezrukov, A. Kolb, C. Parl, and B. J. Pichler, “Principles of PET/MR imaging,” J. Nucl. Med. 55, 2S10S (2014).
http://dx.doi.org/10.2967/jnumed.113.129098
3.
3.S. Vandenberghe and P. K. Marsden, “PET-MRI: A review of challenges and solutions in the development of integrated multimodality imaging,” Phys. Med. Biol. 60(4), R115R154 (2015).
http://dx.doi.org/10.1088/0031-9155/60/4/R115
4.
4.I. Bezrukov, F. Mantlik, H. Schmidt, B. Scholkopf, and B. J. Pichler, “MR-based PET attenuation correction for PET/MR imaging,” Semin. Nucl. Med. 43(1), 4559 (2013).
http://dx.doi.org/10.1053/j.semnuclmed.2012.08.002
5.
5.H. Zaidi, “Is MR-guided attenuation correction a viable option for dual-modality PET/MR imaging?,” Radiology 244(3), 639642 (2007).
http://dx.doi.org/10.1148/radiol.2443070092
6.
6.M. Hofmann, B. Pichler, B. Schölkopf, and T. Beyer, “Towards quantitative PET/MRI: A review of MR-based attenuation correction techniques,” Eur. J. Nucl. Med. Mol. Imaging 36(1), 93104 (2009).
http://dx.doi.org/10.1007/s00259-008-1007-7
7.
7.G. Wagenknecht, H. J. Kaiser, F. Mottaghy, and H. Herzog, “MRI for attenuation correction in PET: Methods and challenges,” Magn. Reson. Mater. Phys., Biol. Med. 26(1), 99113 (2013).
http://dx.doi.org/10.1007/s10334-012-0353-4
8.
8.A. Martinez-Moller and S. G. Nekolla, “Attenuation correction for PET/MR: Problems, novel approaches and practical solutions,” Z. Med. Phys. 22(4), 299310 (2012).
http://dx.doi.org/10.1016/j.zemedi.2012.08.003
9.
9.V. Keereman, P. Mollet, Y. Berker, V. Schulz, and S. Vandenberghe, “Challenges and current methods for attenuation correction in PET/MR,” Magn. Reson. Mater. Phys., Biol. Med. 26(1), 8198 (2013).
http://dx.doi.org/10.1007/s10334-012-0334-7
10.
10.H. Zaidi and B. H. Hasegawa, “Determination of the attenuation map in emission tomography,” J. Nucl. Med. 44(2), 291315 (2003), see http://www.ncbi.nlm.nih.gov/pubmed/12571222.
11.
11.C. Catana, A. van der Kouwe, T. Benner, C. J. Michel, M. Hamm, M. Fenchel, B. Fischl, B. Rosen, M. Schmand, and A. G. Sorensen, “Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype,” J. Nucl. Med. 51(9), 14311438 (2010).
http://dx.doi.org/10.2967/jnumed.109.069112
12.
12.V. Keereman, Y. Fierens, T. Broux, Y. De Deene, M. Lonneux, and S. Vandenberghe, “MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences,” J. Nucl. Med. 51(5), 812818 (2010).
http://dx.doi.org/10.2967/jnumed.109.065425
13.
13.K. Zeimpekis, G. Delso, F. Wiesinger, P. Veit-Haibach, G. von Schulthess, and R. Grimm, “Investigation of 3D UTE MRI for lung PET attenuation correction [abstract],” J. Nucl. Med. 55(Suppl. 1), 2103 (2014).
14.
14.A. Aitken, C. Kolbitsch, T. Schaeffter, C. Prieto Vasquez, A. Aitken, C. Kolbitsch, T. Schaeffter, and C. Prieto Vasquez, “Rapid acquisition of PET attenuation maps from highly undersampled UTE images using sparse-SENSE reconstruction,” in Proceedings of the 21st Annual Meeting of ISMRM, Salt Lake City, UT (Lacke City, UT, 2013), p. 0769.
15.
15.A. Johansson, A. Garpebring, T. Asklund, and T. Nyholm, “CT substitutes derived from MR images reconstructed with parallel imaging,” Med. Phys. 41(8), 082302 (7pp.) (2014).
http://dx.doi.org/10.1118/1.4886766
16.
16.Z. Hu, N. Ojha, S. Renisch, V. Schulz, I. Torres, D. Pal, G. Muswick, J. Penatzer, T. Guo, P. Boernert, C.-H. Tung, J. Kaste, L. Shao, M. Morich, T. Havens, P. Maniawski, W. Schaefer, R. Guenther, and G. Krombach, “MR-based attenuation correction for a whole-body sequential PET/MR system,” in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, Orlando, FL, 2009), pp. 35083512.
17.
17.B. A. Hargreaves, P. W. Worters, K. B. Pauly, J. M. Pauly, K. M. Koch, and G. E. Gold, “Metal-induced artifacts in MRI,” Am. J. Roentgenol. 197(3), 547555 (2011).
http://dx.doi.org/10.2214/AJR.11.7364
18.
18.V. Keereman, R. V. Holen, P. Mollet, and S. Vandenberghe, “The effect of errors in segmented attenuation maps on PET quantification,” Med. Phys. 38(11), 60106019 (2011).
http://dx.doi.org/10.1118/1.3651640
19.
19.F. L. Andersen, C. N. Ladefoged, T. Beyer, S. H. Keller, A. E. Hansen, L. Hojgaard, A. Kjaer, I. Law, and S. Holm, “Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone,” NeuroImage 84, 206216 (2014).
http://dx.doi.org/10.1016/j.neuroimage.2013.08.042
20.
20.J. Teuho, J. Johansson, J. Linden, V. Saunavaara, T. Tolvanen, and M. Teras, “Specification and estimation of sources of bias affecting neurological studies in PET/MR with an anatomical brain phantom,” Nucl. Instrum. Methods Phys. Res., Sect. A 734, 179184 (2014).
http://dx.doi.org/10.1016/j.nima.2013.09.002
21.
21.H. Zaidi, M. L. Montandon, and D. O. Slosman, “Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography,” Med. Phys. 30(5), 937948 (2003).
http://dx.doi.org/10.1118/1.1569270
22.
22.G. Wagenknecht, E. R. Kops, L. Tellmann, and H. Herzog, “Knowledge-based segmentation of attenuation-relevant regions of the head in T1-weighted MR images for attenuation correction in MR/PET systems,” in IEEE Nuclear Science Symposium Conference Record (NSS/MIC) (IEEE, Orlando, FL, 2009), pp. 33383343.
http://dx.doi.org/10.1109/NSSMIC.2009.5401751
23.
23.G. Wagenknecht, E. R. Kops, J. Kaffanke, L. Tellmann, F. Mottaghy, M. D. Piroth, and H. Herzog, “CT-based evaluation of segmented head regions for attenuation correction in MR-PET systems,” in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, Knoxville, TN, 2010), pp. 27932797.
http://dx.doi.org/10.1109/NSSMIC.2010.5874301
24.
24.E. Rota Kops, G. Wagenknecht, J. J. Scheins, L. Tellmann, and H. Herzog, “Attenuation correction in MR-PET scanners with segmented T1-weighted MR images,” in IEEE Nuclear Science Symposium and Medical Imaging Conference, Orlando, FL, 25-31 October 2009 (IEEE, Orlando, FL, 2009), pp. 25302533.
25.
25.Y. Berker, J. Franke, A. Salomon, M. Palmowski, H. C. Donker, Y. Temur, F. M. Mottaghy, C. Kuhl, D. Izquierdo-Garcia, Z. A. Fayad, F. Kiessling, and V. Schulz, “MRI-based attenuation correction for hybrid PET/MRI systems: A 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence,” J. Nucl. Med. 53(5), 796804 (2012).
http://dx.doi.org/10.2967/jnumed.111.092577
26.
26.A. Martinez-Möller, M. Souvatzoglou, G. Delso, R. A. Bundschuh, C. Chefd’hotel, S. I. Ziegler, N. Navab, M. Schwaiger, and S. G. Nekolla, “Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: Evaluation with PET/CT data,” J. Nucl. Med. 50(4), 520526 (2009).
http://dx.doi.org/10.2967/jnumed.108.054726
27.
27.S. D. Wollenweber, S. Ambwani, A. R. Lonn, D. D. Shanbhag, S. Thiruvenkadam, S. Kaushik, R. Mullick, H. Qian, G. Delso, and F. Wiesinger, “Comparison of 4-class and continuous fat/water methods for whole-body, MR-based PET attenuation correction,” IEEE Trans. Nucl. Sci. 60(5), 33913398 (2013).
http://dx.doi.org/10.1109/TNS.2013.2278759
28.
28.M. Hofmann, F. Steinke, V. Scheel, G. Charpiat, J. Farquhar, P. Aschoff, M. Brady, B. Schölkopf, and B. J. Pichler, “MRI-based attenuation correction for PET/MRI: A novel approach combining pattern recognition and atlas registration,” J. Nucl. Med. 49(11), 18751883 (2008).
http://dx.doi.org/10.2967/jnumed.107.049353
29.
29.S. L. S. Chan, Y. Gal, R. L. Jeffree, M. Fay, P. Thomas, S. Crozier, and Y. Zhengyi, “Automated classification of bone and air volumes for hybrid PET-MRI brain imaging,” in International Conference on Digital Image Computing: Techniques and Applications (DICTA), Hobart, Australia (Springer, India, 2013), pp. 18.
http://dx.doi.org/10.1007/978-81-322-0740-5_1
30.
30.N. Burgos, M. Cardoso, K. Thielemans, M. Modat, J. Schott, J. Duncan, D. Atkinson, S. Arridge, B. Hutton, and S. Ourselin, “Attenuation correction synthesis for hybrid PET-MR scanners: Application to brain studies,” IEEE Trans. Med. Imaging 33(12), 23322341 (2014).
http://dx.doi.org/10.1109/TMI.2014.2340135
31.
31.D. Andreasen, K. Van Leemput, R. H. Hansen, J. A. Andersen, and J. M. Edmund, “Patch-based generation of a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brain,” Med. Phys. 42(4), 15961605 (2015).
http://dx.doi.org/10.1118/1.4914158
32.
32.A. Johansson, A. Garpebring, M. Karlsson, T. Asklund, and T. Nyholm, “Improved quality of computed tomography substitute derived from magnetic resonance (MR) data by incorporation of spatial information-potential application for MR-only radiotherapy and attenuation correction in positron emission tomography,” Acta Oncol. 52(7), 13691373 (2013).
http://dx.doi.org/10.3109/0284186X.2013.819119
33.
33.M. R. Juttukonda, B. G. Mersereau, Y. Chen, Y. Su, B. G. Rubin, T. L. Benzinger, D. S. Lalush, and H. An, “MR-based attenuation correction for PET/MRI neurological studies with continuous-valued attenuation coefficients for bone through a conversion from R2* to CT-Hounsfield units,” NeuroImage 112, 160168 (2015).
http://dx.doi.org/10.1016/j.neuroimage.2015.03.009
34.
34.S. Roy, W.-T. Wang, A. Carass, J. L. Prince, J. A. Butman, and D. L. Pham, “PET attenuation correction using synthetic CT from ultrashort echo-time MR imaging,” J. Nucl. Med. 55(12), 20712077 (2014).
http://dx.doi.org/10.2967/jnumed.114.143958
35.
35.M. Hofmann, I. Bezrukov, F. Mantlik, P. Aschoff, F. Steinke, T. Beyer, B. J. Pichler, and B. Scholkopf, “MRI-based attenuation correction for whole-body PET/MRI: Quantitative evaluation of segmentation- and atlas-based methods,” J. Nucl. Med. 52(9), 13921399 (2011).
http://dx.doi.org/10.2967/jnumed.110.078949
36.
36.I. Bezrukov, H. Schmidt, F. Mantlik, N. Schwenzer, C. Brendle, B. Schölkopf, and B. J. Pichler, “MR-based attenuation correction methods for improved PET quantification in lesions within bone and susceptibility artifact regions,” J. Nucl. Med. 54(10), 17681774 (2013).
http://dx.doi.org/10.2967/jnumed.112.113209
37.
37.H. R. Marshall, J. Patrick, D. Laidley, F. S. Prato, J. Butler, J. Théberge, R. T. Thompson, and R. Z. Stodilka, “Description and assessment of a registration-based approach to include bones for attenuation correction of whole-body PET/MRI,” Med. Phys. 40(8), 082509 (10pp.) (2013).
http://dx.doi.org/10.1118/1.4816301
38.
38.H. Arabi and H. Zaidi, “MRI-based pseudo-CT generation using sorted atlas images in whole-body,” IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Seattle, WA, 2014.
39.
39.M. Defrise, A. Rezaei, and J. Nuyts, “Time-of-flight PET data determine the attenuation sinogram up to a constant,” Phys. Med. Biol. 57(4), 885899 (2012).
http://dx.doi.org/10.1088/0031-9155/57/4/885
40.
40.A. Rezaei, M. Defrise, G. Bal, C. Michel, M. Conti, C. Watson, and J. Nuyts, “Simultaneous reconstruction of activity and attenuation in time-of-flight PET,” IEEE Trans. Med. Imaging 31(12), 22242233 (2012).
http://dx.doi.org/10.1109/TMI.2012.2212719
41.
41.A. Salomon, A. Goedicke, B. Schweizer, T. Aach, and V. Schulz, “Simultaneous reconstruction of activity and attenuation for PET/MR,” IEEE Trans. Med. Imaging 30(3), 804813 (2011).
http://dx.doi.org/10.1109/TMI.2010.2095464
42.
42.A. Mehranian and H. Zaidi, “Clinical assessment of emission- and segmentation-based MRI-guided attenuation correction in whole body TOF PET/MRI,” J. Nucl. Med. 56(6), 877883 (2015).
http://dx.doi.org/10.2967/jnumed.115.154807
43.
43.P. Mollet, V. Keereman, J. Bini, D. Izquierdo-Garcia, Z. A. Fayad, and S. Vandenberghe, “Improvement of attenuation correction in time-of-flight PET/MR imaging with a positron-emitting source,” J. Nucl. Med. 55(2), 329336 (2014).
http://dx.doi.org/10.2967/jnumed.113.125989
44.
44.V. Y. Panin, M. Aykac, and M. E. Casey, “Simultaneous reconstruction of emission activity and attenuation coefficient distribution from TOF data, acquired with external transmission source,” Phys. Med. Biol. 58(11), 36493669 (2013).
http://dx.doi.org/10.1088/0031-9155/58/11/3649
45.
45.G. Delso, M. Carl, F. Wiesinger, L. Sacolick, M. Porto, M. Hüllner, A. Boss, and P. Veit-Haibach, “Anatomic evaluation of 3-dimensional ultrashort-echo-time bone maps for PET/MR attenuation correction,” J. Nucl. Med. 55(5), 780785 (2014).
http://dx.doi.org/10.2967/jnumed.113.130880
46.
46.K. M. Johnson, S. B. Fain, M. L. Schiebler, and S. Nagle, “Optimized 3D ultrashort echo time pulmonary MRI,” Magn. Reson. Med. 70(5), 12411250 (2013).
http://dx.doi.org/10.1002/mrm.24570
47.
47.Z. Hu, S. Renisch, B. Schweizer, T. Blaffert, N. Ojha, T. Guo, J. Tang, C. Tung, J. Kaste, V. Schulz, I. Torres, and L. Shao, “MR-based attenuation correction for whole-body PET/MR system,” in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, Knoxville, TN, 2010), pp. 21192122.
http://dx.doi.org/10.1109/NSSMIC.2010.5874153
48.
48.V. Schulz, I. Torres-Espallardo, S. Renisch, Z. Hu, N. Ojha, P. Börnert, M. Perkuhn, T. Niendorf, W. M. Schäfer, H. Brockmann, T. Krohn, A. Buhl, R. W. Günther, F. M. Mottaghy, and G. A. Krombach, “Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data,” Eur. J. Nucl. Med. Mol. Imaging 38(1), 138152 (2011).
http://dx.doi.org/10.1007/s00259-010-1603-1
49.
49.H. Zaidi, N. Ojha, M. Morich, J. Griesmer, Z. Hu, P. Maniawski, O. Ratib, D. Izquierdo-Garcia, Z. A. Fayad, and L. Shao, “Design and performance evaluation of a whole-body ingenuity TF PET-MRI system,” Phys. Med. Biol. 56(10), 30913106 (2011).
http://dx.doi.org/10.1088/0031-9155/56/10/013
50.
50.M. Eiber, A. Martinez-Möller, M. Souvatzoglou, K. Holzapfel, A. Pickhard, D. Löffelbein, I. Santi, E. Rummeny, S. Ziegler, M. Schwaiger, S. Nekolla, and A. Beer, “Value of a Dixon-based MR/PET attenuation correction sequence for the localization and evaluation of PET-positive lesions,” Eur. J. Nucl. Med. Mol. Imaging 38(9), 16911701 (2011).
http://dx.doi.org/10.1007/s00259-011-1842-9
51.
51.A. Samarin, C. Burger, S. Wollenweber, D. Crook, I. Burger, D. Schmid, G. von Schulthess, and F. Kuhn, “PET/MR imaging of bone lesions—Implications for PET quantification from imperfect attenuation correction,” Eur. J. Nucl. Med. Mol. Imaging 39(7), 11541160 (2012).
http://dx.doi.org/10.1007/s00259-012-2113-0
52.
52.M. C. Aznar, R. Sersar, J. Saabye, C. N. Ladefoged, F. L. Andersen, J. H. Rasmussen, J. Lofgren, and T. Beyer, “Whole-body PET/MRI: The effect of bone attenuation during MR-based attenuation correction in oncology imaging,” Eur. J. Radiol. 83(7), 11771183 (2014).
http://dx.doi.org/10.1016/j.ejrad.2014.03.022
53.
53.J. Ouyang, C. Se Young, Y. Petibon, A. A. Bonab, N. Alpert, and G. El Fakhri, “Bias atlases for segmentation-based PET attenuation correction using PET-CT and MR,” IEEE Trans. Nucl. Sci. 60(5), 33733382 (2013).
http://dx.doi.org/10.1109/TNS.2013.2278624
54.
54.A. Akbarzadeh, M. R. Ay, A. Ahmadian, N. Riahi Alam, and H. Zaidi, “MRI-guided attenuation correction in whole-body PET/MR: Assessment of the effect of bone attenuation,” Ann. Nucl. Med. 27(2), 152162 (2013).
http://dx.doi.org/10.1007/s12149-012-0667-3
55.
55.S. Keller, S. Holm, A. Hansen, B. Sattler, F. Andersen, T. Klausen, L. Højgaard, A. Kjær, and T. Beyer, “Image artifacts from MR-based attenuation correction in clinical, whole-body PET/MRI,” Magn. Reson. Mater. Phys., Biol. Med. 26(1), 173181 (2013).
http://dx.doi.org/10.1007/s10334-012-0345-4
56.
56.H. Arabi, O. Rager, A. Alem, A. Varoquaux, M. Becker, and H. Zaidi, “Clinical assessment of MR-guided 3-class and 4-class attenuation correction in PET/MR,” Mol. Imaging Biol. 17(2), 264276 (2015).
http://dx.doi.org/10.1007/s11307-014-0777-5
57.
57.H. Choi, G. J. Cheon, H. J. Kim, S. H. Choi, J. S. Lee, Y. I. Kim, K. W. Kang, J. K. Chung, E. E. Kim, and D. S. Lee, “Segmentation-based MR attenuation correction including bones also affects quantitation in brain studies: An initial result of 18F-FP-CIT PET/MR for patients with parkinsonism,” J. Nucl. Med. 55(10), 16171622 (2014).
http://dx.doi.org/10.2967/jnumed.114.138636
58.
58.C. Brendle, H. Schmidt, A. Oergel, I. Bezrukov, M. Mueller, C. Schraml, C. Pfannenberg, C. la Fougere, K. Nikolaou, and N. Schwenzer, “Segmentation-based attenuation correction in positron emission tomography/magnetic resonance: Erroneous tissue identification and its impact on positron emission tomography interpretation,” Invest. Radiol. 50(5), 339346 (2015).
http://dx.doi.org/10.1097/RLI.0000000000000131
59.
59.C. N. Ladefoged, A. E. Hansen, S. H. Keller, B. M. Fischer, J. H. Rasmussen, I. Law, A. Kjær, L. Højgaard, F. Lauze, and T. Beyer, “Dental artifacts in the head and neck region: Implications for Dixon-based attenuation correction in PET/MR,” EJNMMI Phys. 2(1), 822 (2015).
http://dx.doi.org/10.1186/s40658-015-0112-5
60.
60.Y. C. Tai, K. P. Lin, M. Dahlbom, and E. J. Hoffman, “A hybrid attenuation correction technique to compensate for lung density in 3-D total body PET,” IEEE Trans. Nucl. Sci. 43(1), 323330 (1996).
http://dx.doi.org/10.1109/23.485973
61.
61.T. Chang, R. H. Diab, J. W. Clark, and O. R. Mawlawi, “Investigating the use of nonattenuation corrected PET images for the attenuation correction of PET data,” Med. Phys. 40(8), 082508 (11pp.) (2013).
http://dx.doi.org/10.1118/1.4816304
62.
62.M.-L. Montandon and H. Zaidi, “Atlas-guided non-uniform attenuation correction in cerebral 3D PET imaging,” NeuroImage 25(1), 278286 (2005).
http://dx.doi.org/10.1016/j.neuroimage.2004.11.021
63.
63.H. Zaidi, M.-L. Montandon, and S. Meikle, “Strategies for attenuation compensation in neurological PET studies,” NeuroImage 34(2), 518541 (2007).
http://dx.doi.org/10.1016/j.neuroimage.2006.10.002
64.
64.S. D. Wollenweber, S. Ambwani, G. Delso, A. H. R. Lonn, R. Mullick, F. Wiesinger, Z. Piti, A. Tari, G. Novak, and M. Fidrich, “Evaluation of an atlas-based PET head attenuation correction using PET/CT & MR patient data,” IEEE Trans. Nucl. Sci. 60(5), 33833390 (2013).
http://dx.doi.org/10.1109/TNS.2013.2273417
65.
65.J. Uh, T. E. Merchant, Y. Li, X. Li, and C. Hua, “MRI-based treatment planning with pseudo CT generated through atlas registration,” Med. Phys. 41(5), 051711 (8pp.) (2014).
http://dx.doi.org/10.1118/1.4873315
66.
66.H. Arabi and H. Zaidi, “Comparison of atlas-based bone segmentation methods in whole-body PET/MRI,” inIEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Seattle, WA, 2014.
67.
67.D. Izquierdo-Garcia, A. E. Hansen, S. Forster, D. Benoit, S. Schachoff, S. Furst, K. T. Chen, D. B. Chonde, and C. Catana, “An spm8-based approach for attenuation correction combining segmentation and nonrigid template formation: Application to simultaneous PET/MR brain imaging,” J. Nucl. Med. 55(11), 18251830 (2014).
http://dx.doi.org/10.2967/jnumed.113.136341
68.
68.Z. Yang, J. Choupan, F. Sepehrband, D. Reutens, and S. Crozier, “Tissue classification for PET/MRI attenuation correction using conditional random field and image fusion,” Int. J. Mach. Learn. Comput. 3(1), 8798 (2013).
http://dx.doi.org/10.7763/IJMLC.2013.V3.278
69.
69.J. Sjölund, D. Forsberg, M. Andersson, and H. Knutsson, “Generating patient specific pseudo-CT of the head from MR using atlas-based regression,” Phys. Med. Biol. 60(2), 825839 (2015).
http://dx.doi.org/10.1088/0031-9155/60/2/825
70.
70.A. Johansson, M. Karlsson, J. Yu, T. Asklund, and T. Nyholm, “Voxel-wise uncertainty in CT substitute derived from MRI,” Med. Phys. 39(6), 32833290 (2012).
http://dx.doi.org/10.1118/1.4711807
71.
71.N. Burgos, M. J. Cardoso, M. Modat, S. Pedemonte, J. Dickson, A. Barnes, J. S. Duncan, D. Atkinson, S. R. Arridge, and B. F. Hutton, “Attenuation correction synthesis for hybrid PET-MR scanners,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI (Springer, Berlin Heidelberg, 2013), pp. 147154.
72.
72.A. S. Ribeiro, E. R. Kops, H. Herzog, and P. Almeida, “Hybrid approach for attenuation correction in PET/MR scanners,” Nucl. Instrum. Methods Phys. Res., Sect. A 734, 166170 (2014).
http://dx.doi.org/10.1016/j.nima.2013.09.034
73.
73.C. B. Poynton, K. T. Chen, D. B. Chonde, D. Izquierdo-Garcia, R. L. Gollub, E. R. Gerstner, T. T. Batchelor, and C. Catana, “Probabilistic atlas-based segmentation of combined T1-weighted and DUTE MRI for calculation of head attenuation maps in integrated PET/MRI scanners,” Am. J. Nucl. Med. Mol. Imaging 4(2), 160171 (2014).
74.
74.G. Delso, K. Zeimpekis, M. Carl, F. Wiesinger, M. Hüllner, and P. Veit-Haibach, “Cluster-based segmentation of dual-echo ultra-short echo time images for PET/MR bone localization,” EJNMMI Phys. 1(1), 113 (2014).
http://dx.doi.org/10.1186/2197-7364-1-7
75.
75.D. H. Paulus, H. H. Quick, C. Geppert, M. Fenchel, Y. Zhan, G. Hermosillo, D. Faul, F. Boada, K. P. Friedman, and T. Koesters, “Whole-body PET/MR imaging: Quantitative evaluation of a novel model-based MR attenuation correction method including bone,” J. Nucl. Med. 56(7), 10611066 (2015).
http://dx.doi.org/10.2967/jnumed.115.156000
76.
76.E. Rota Kops and H. Herzog, “Template based attenuation correction for PET in MR-PET scanners,” in IEEE Nuclear Science Symposium Conference Record (IEEE, Dresden, Germany, 2008), pp. 37863789.
77.
77.Y. Xia, J. Fripp, S. S. Chandra, R. Schwarz, C. Engstrom, and S. Crozier, “Automated bone segmentation from large field of view 3D MR images of the hip joint,” Phys. Med. Biol. 58(20), 73757390 (2013).
http://dx.doi.org/10.1088/0031-9155/58/20/7375
78.
78.I. Bezrukov, H. Schmidt, S. Gatidis, F. Mantlik, J. F. Schäfer, N. F. Schwenzer, and B. J. Pichler, “Quantitative evaluation of segmentation-and atlas-based attenuation correction for PET/MR on pediatric patients,” J. Nucl. Med. 56(7), 10671074 (2015).
http://dx.doi.org/10.2967/jnumed.114.149476
79.
79.F. Natterer, “Determination of tissue attenuation in emission tomography of optically dense media,” Inverse Probl. 9(6), 731736 (1993).
http://dx.doi.org/10.1088/0266-5611/9/6/009
80.
80.A. Rezaei, J. Nuyts, and M. Defrise, “Analytic reconstruction of the attenuation from 3D time-of-flight PET data,” in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, Anaheim, CA, 2012), pp. 23302333.
81.
81.H. Li, G. El Fakhri, and Q. Li, “Direct MAP estimation of attenuation sinogram using TOF PET data and anatomical information,” in Proceedings of Fully 3D Image Reconstruction in Radiology and Nuclear Medicine (Orlando, FL, 2013), pp. 404407.
82.
82.Y. Censor, D. E. Gustafson, A. Lent, and H. Tuy, “A new approach to the emission computerized tomography problem: Simultaneous calculation of attenuation and activity coefficients,” IEEE Trans. Nucl. Sci. 26(2), 27752779 (1979).
http://dx.doi.org/10.1109/TNS.1979.4330535
83.
83.J. Nuyts, P. Dupont, S. Stroobants, R. Benninck, L. Mortelmans, and P. Suetens, “Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms,” IEEE Trans. Med. Imaging 18(5), 393403 (1999).
http://dx.doi.org/10.1109/42.774167
84.
84.A. Salomon, A. Goedicke, and T. Aach, “Simultaneous reconstruction of activity and attenuation in multi-modal ToF-PET,” in International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Fully3D), Beijing, China, 5-10 September 2009 (Beijing, China, 2009), pp. 339342.
85.
85.A. Rezaei, M. Defrise, and J. Nuyts, “ML-reconstruction for TOF-PET with simultaneous estimation of the attenuation factors,” IEEE Trans. Med. Imaging 33(7), 15631572 (2014).
http://dx.doi.org/10.1109/TMI.2014.2318175
86.
86.G. Bal, F. Kehren, C. Michel, C. Watson, D. Manthey, and J. Nuyts, “Clinical evaluation of MLAA for MR-PET [abstract],” J. Nucl. Med. 52(Suppl. 1), 263 (2011).
http://dx.doi.org/10.2967/jnumed.110.082701
87.
87.A. Mehranian and H. Zaidi, “Joint estimation of activity and attenuation in whole-body TOF PET/MRI using constrained Gaussian mixture models,” IEEE Trans. Med. Imaging 34(9), 18081821 (2015).
http://dx.doi.org/10.1109/TMI.2015.2409157
88.
88.A. Mehranian, H. Arabi, and H. Zaidi, “Quantitative analysis of MRI-guided attenuation correction methods in time-of-flight brain PET/MRI,” NeuroImage (in press).
89.
89.N. H. Clinthorne, J. A. Fessler, G. D. Hutchins, and W. L. Rogers, “Joint maximum likelihood estimation of emission and attenuation densities in PET,” in Conference Record of the IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, Santa Fe, NM, 1991), pp. 19271932.
http://dx.doi.org/10.1109/NSSMIC.1991.259253
90.
90.W. W. Moses, “Time of flight in PET revisited,” IEEE Trans. Nucl. Sci. 50(5), 13251330 (2003).
http://dx.doi.org/10.1109/TNS.2003.817319
91.
91.P. Mollet, V. Keereman, E. Clementel, and S. Vandenberghe, “Simultaneous MR-compatible emission and transmission imaging for PET using time-of-flight information,” IEEE Trans. Med. Imaging 31, 17341742 (2012).
http://dx.doi.org/10.1109/tmi.2012.2198831
92.
92.C. C. Watson, “Supplemental transmission method for improved PET attenuation correction on an integrated MR/PET,” Nucl. Instrum. Methods Phys. Res., Sect. A 734(Part B), 191195 (2014).
http://dx.doi.org/10.1016/j.nima.2013.08.068
93.
93.H. Rothfuss, V. Panin, A. Moor, J. Young, I. Hong, C. Michel, J. Hamill, and M. Casey, “LSO background radiation as a transmission source using time of flight,” Phys. Med. Biol. 59(18), 54835500 (2014).
http://dx.doi.org/10.1088/0031-9155/59/18/5483
94.
94.M. Conti, I. Hong, and C. Michel, “Reconstruction of scattered and unscattered PET coincidences using TOF and energy information,” Phys. Med. Biol. 57(15), N307N317 (2012).
http://dx.doi.org/10.1088/0031-9155/57/15/N307
95.
95.H. Sun and S. Pistorius, “A generalized scatter reconstruction algorithm for limited energy resolution PET detectors,” IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Seattle, WA, 2014.
96.
96.Y. Berker, F. Kiessling, and V. Schulz, “Scattered PET data for attenuation-map reconstruction in PET/MRI,” Med. Phys. 41(10), 102502 (13pp.) (2014).
http://dx.doi.org/10.1118/1.4894818
97.
97.G. Delso, A. Martinez-Möller, R. A. Bundschuh, S. G. Nekolla, and S. I. Ziegler, “The effect of limited MR field of view in MR/PET attenuation correction,” Med. Phys. 37(6), 28042812 (2010).
http://dx.doi.org/10.1118/1.3431576
98.
98.G. Schramm, J. Langner, F. Hofheinz, J. Petr, A. Lougovski, B. Beuthien-Baumann, I. Platzek, and J. van den Hoff, “Influence and compensation of truncation artifacts in MR-based attenuation correction in PET/MR,” IEEE Trans. Med. Imaging 32(11), 20562063 (2013).
http://dx.doi.org/10.1109/TMI.2013.2272660
99.
99.H. Qian, R. M. Manjeshwar, S. Ambwani, and S. D. Wollenweber, “Truncation completion of MR-based PET attenuation maps using time-of-flight non-attenuation-corrected PET images,” in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, Anaheim, CA, 2012), pp. 27732775.
100.
100.T. Blaffert, S. Renisch, J. Tang, M. Narayanan, and Z. Hu, “Comparison of threshold-based and watershed-based segmentation for the truncation compensation of PET/MR images,” Proc. SPIE 8314, 831403-1831403-12 (2012).
http://dx.doi.org/10.1117/12.911221
101.
101.J. Nuyts, G. Bal, F. Kehren, M. Fenchel, C. Michel, and C. Watson, “Completion of a truncated attenuation image from the attenuated PET emission data,” IEEE Trans. Med. Imaging 32(2), 237246 (2013).
http://dx.doi.org/10.1109/TMI.2012.2220376
102.
102.J. O. Blumhagen, R. Ladebeck, M. Fenchel, and K. Scheffler, “MR-based field-of-view extension in MR/PET: B0 homogenization using gradient enhancement (HUGE),” Magn. Reson. Med. 70(4), 10471057 (2013).
http://dx.doi.org/10.1002/mrm.24555
103.
103.J. O. Blumhagen, H. Braun, R. Ladebeck, M. Fenchel, D. Faul, K. Scheffler, and H. H. Quick, “Field of view extension and truncation correction for MR-based human attenuation correction in simultaneous MR/PET imaging,” Med. Phys. 41(2), 022303 (9pp.) (2014).
http://dx.doi.org/10.1118/1.4861097
104.
104.C. N. Ladefoged, T. Beyer, S. H. Keller, I. Law, L. Hojgaard, A. Kjær, F. Lauze, and F. L. Andersen, “PET/MR imaging of head/neck in the presence of dental implants: Reducing image artifacts and increasing accuracy through inpainting [abstract],” Annual Congress of the European Association of Nuclear Medicine, 601 (2013).
105.
105.C. Ladefoged, F. Andersen, S. Keller, J. Löfgren, A. Hansen, S. Holm, L. Højgaard, and T. Beyer, “PET/MR imaging of the pelvis in the presence of endoprostheses: Reducing image artifacts and increasing accuracy through inpainting,” Eur. J. Nucl. Med. Mol. Imaging 40(4), 594601 (2013).
http://dx.doi.org/10.1007/s00259-012-2316-4
106.
106.G. Schramm, J. Maus, F. Hofheinz, J. Petr, A. Lougovski, B. Beuthien-Baumann, I. Platzek, and J. van den Hoff, “Evaluation and automatic correction of metal-implant-induced artifacts in MR-based attenuation correction in whole-body PET/MR imaging,” Phys. Med. Biol. 59(11), 27132726 (2014).
http://dx.doi.org/10.1088/0031-9155/59/11/2713
107.
107.M. J. Lee, S. Kim, S. A. Lee, H. T. Song, Y. M. Huh, D. H. Kim, S. H. Han, and J. S. Suh, “Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT,” Radiographics 27(3), 791803 (2007).
http://dx.doi.org/10.1148/rg.273065087
108.
108.K. M. Koch, J. E. Lorbiecki, R. S. Hinks, and K. F. King, “A multispectral three-dimensional acquisition technique for imaging near metal implants,” Magn. Reson. Med. 61(2), 381390 (2009).
http://dx.doi.org/10.1002/mrm.21856
109.
109.I. A. Burger, M. C. Wurnig, A. S. Becker, D. Kenkel, G. Delso, P. Veit-Haibach, and A. Boss, “Hybrid PET/MR imaging: An algorithm to reduce metal artifacts from dental implants in Dixon-based attenuation map generation using a multiacquisition variable-resonance image combination sequence,” J. Nucl. Med. 56(1), 9397 (2015).
http://dx.doi.org/10.2967/jnumed.114.145862
110.
110.J. M. Gunzinger, G. Delso, A. Boss, M. Porto, H. Davison, G. K. von Schulthess, M. Huellner, P. Stolzmann, P. Veit-Haibach, and I. A. Burger, “Metal artifact reduction in patients with dental implants using multispectral three-dimensional data acquisition for hybrid PET/MRI,” EJNMMI Phys. 1(1), 102115 (2014).
http://dx.doi.org/10.1186/s40658-014-0102-z
111.
111.T. Pan and H. Zaidi, “Attenuation correction strategies for positron emission tomography/computed tomography and 4-dimensional positron emission tomography/computed tomography,” PET Clin. 8(1), 3750 (2013).
http://dx.doi.org/10.1016/j.cpet.2012.09.009
112.
112.C. Buerger, A. Aitken, C. Tsoumpas, A. P. King, V. Schulz, P. Marsden, and T. Schaeffter, “Investigation of 4D PET attenuation correction using ultra-short echo time MR,” in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, Valencia, Spain, 2011), pp. 35583561.
113.
113.H. Fayad, H. Schmidt, C. Wuerslin, and D. Visvikis, “4D attenuation map generation in PET/MR imaging using 4D PET derived motion fields,” in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, Seoul, Korea, 2013), pp. 14.
114.
114.A. Mehranian and H. Zaidi, “Emission-based estimation of lung attenuation coefficients for attenuation correction in PET/MR,” Phys. Med. Biol. 60(12), 48134833 (2015).
http://dx.doi.org/10.1088/0031-9155/60/12/4813
115.
115.A. Rezaei and J. Nuyts, “Joint registration of attenuation and activity images in gated TOF-PET,” in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, Seoul, Korea, 2013), pp. 14.
116.
116.L. R. MacDonald, S. Kohlmyer, C. Liu, T. K. Lewellen, and P. E. Kinahan, “Effects of MR surface coils on PET quantification,” Med. Phys. 38(6), 29482956 (2011).
http://dx.doi.org/10.1118/1.3583697
117.
117.R. Kartmann, D. H. Paulus, H. Braun, B. Aklan, S. Ziegler, B. K. Navalpakkam, M. Lentschig, and H. H. Quick, “Integrated PET/MR imaging: Automatic attenuation correction of flexible RF coils,” Med. Phys. 40(8), 082301 (14pp.) (2013).
http://dx.doi.org/10.1118/1.4812685
118.
118.S. Fürst, M. Souvatzoglou, A. Martinez-Moller, M. Schwaiger, S. G. Nekolla, and S. I. Ziegler, “Impact of flexible body surface coil and patient table on PET quantification and image quality in integrated PET/MR,” Nuklearmedizin 53(3), 7987 (2014).
http://dx.doi.org/10.3413/nukmed-0608-13-07
119.
119.G. Delso, A. Martinez-Möller, R. A. Bundschuh, R. Ladebeck, Y. Candidus, D. Faul, and S. I. Ziegler, “Evaluation of the attenuation properties of MR equipment for its use in a whole-body PET/MR scanner,” Phys. Med. Biol. 55(15), 43614374 (2010).
http://dx.doi.org/10.1088/0031-9155/55/15/011
120.
120.B. Aklan, D. H. Paulus, E. Wenkel, H. Braun, B. K. Navalpakkam, S. Ziegler, C. Geppert, E. E. Sigmund, A. Melsaether, and H. H. Quick, “Toward simultaneous PET/MR breast imaging: Systematic evaluation and integration of a radiofrequency breast coil,” Med. Phys. 40(2), 024301 (11pp.) (2013).
http://dx.doi.org/10.1118/1.4788642
121.
121.B. Zhang, D. Pal, Z. Hu, N. Ojha, G. Muswick, C.-H. Tung, and J. Kaste, “Attenuation correction for MR table and coils for a sequential PET/MR system,” in IEEE Nuclear Science Symposium and Medical Imaging Conference, Orlando, FL, 25-31 October 2009 (IEEE, Orlando, FL, 2009), pp. 33033306.
122.
122.D. H. Paulus, L. Tellmann, and H. H. Quick, “Towards improved hardware component attenuation correction in PET/MR hybrid imaging,” Phys. Med. Biol. 58(22), 80218040 (2013).
http://dx.doi.org/10.1088/0031-9155/58/22/8021
123.
123.D. H. Paulus, H. Braun, B. Aklan, and H. H. Quick, “Simultaneous PET/MR imaging: MR-based attenuation correction of local radiofrequency surface coils,” Med. Phys. 39(7), 43064315 (2012).
http://dx.doi.org/10.1118/1.4729716
124.
124.M. Eldib, J. Bini, C. Calcagno, P. M. Robson, V. Mani, and Z. A. Fayad, “Attenuation correction for flexible magnetic resonance coils in combined magnetic resonance/positron emission tomography imaging,” Invest. Radiol. 49(2), 6369 (2014).
http://dx.doi.org/10.1097/RLI.0b013e3182a530f8
125.
125.S. Saha, “Whole body RF coil design for a simultaneous PET-MR system,” Joint Annual Meeting ISMRM-ESMRMB, Milan, Italy, 2014.
126.
126.I. Dregely, T. Lanz, S. Metz, M. F. Mueller, M. Kuschan, M. Nimbalkar, R. A. Bundschuh, S. I. Ziegler, A. Haase, S. G. Nekolla, and M. Schwaiger, “A 16-channel MR coil for simultaneous PET/MR imaging in breast cancer,” Eur. Radiol. 25(4), 11541161 (2015).
http://dx.doi.org/10.1007/s00330-014-3445-x
127.
127.M. Hofmann, B. Schölkopf, I. Bezrukov, and N. D. Cahill, “Incorporating prior knowledge on class probabilities into local similarity measures for intermodality image registration,” Proceedings of the MICCAI, Workshop on Probabilistic Models for Medical Image Analysis (PMMIA), 2009.
128.
128.R. Karimi, G. Tornling, H. Forsslund, M. Mikko, A. Wheelock, S. Nyren, and C. M. Skold, “Lung density on high resolution computer tomography (HRCT) reflects degree of inflammation in smokers,” Respir. Res. 15, 2332 (2014).
http://dx.doi.org/10.1186/1465-9921-15-23
129.
129.J. H. Kim, J. S. Lee, I. C. Song, and D. S. Lee, “Comparison of segmentation-based attenuation correction methods for PET/MRI: Evaluation of bone and liver standardized uptake value with oncologic PET/CT data,” J. Nucl. Med. 53(12), 18781882 (2012).
http://dx.doi.org/10.2967/jnumed.112.104109
130.
130.H. R. Marshall, F. S. Prato, L. Deans, J. Théberge, R. T. Thompson, and R. Z. Stodilka, “Variable lung density consideration in attenuation correction of whole-body PET/MRI,” J. Nucl. Med. 53(6), 977984 (2012).
http://dx.doi.org/10.2967/jnumed.111.098350
131.
131.A. R. Lonn and S. D. Wollenweber, “Estimation of mean lung attenuation for use in generating PET attenuation maps,” in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, Anaheim, CA, 2012), pp. 30173018.
132.
132.Y. Berker, A. Salomon, F. Kiessling, and V. Schulz, “Lung attenuation coefficient estimation using maximum likelihood reconstruction of attenuation and activity for PET/MR attenuation correction,” in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, Anaheim, CA, 2012), pp. 22822284.
133.
133.P. J. Schleyer, T. Schaeffter, and P. K. Marsden, “The effect of inaccurate bone attenuation coefficient and segmentation on reconstructed PET images,” Nucl. Med. Commun. 31(8), 708716 (2010).
http://dx.doi.org/10.1097/MNM.0b013e32833b0573
134.
134.B. K. Navalpakkam, H. Braun, T. Kuwert, and H. H. Quick, “Magnetic resonance-based attenuation correction for PET/MR hybrid imaging using continuous valued attenuation maps,” Invest. Radiol. 48(5), 323332 (2013).
http://dx.doi.org/10.1097/RLI.0b013e318283292f
135.
135.W. Lee, J.-A. Park, K. M. Kim, I.-O. Ko, I. Lim, J. S. Kim, J. Kim, S.-K. Woo, J. h. Kang, and S. M. Lim, “Effects of MR contrast agents on PET quantitation in PET-MRI study [abstract],” J. Nucl. Med. 52, 53 (2011).
136.
136.C. Lois, I. Bezrukov, H. Schmidt, N. Schwenzer, M. Werner, J. Kupferschläger, and T. Beyer, “Effect of MR contrast agents on quantitative accuracy of PET in combined whole-body PET/MR imaging,” Eur. J. Nucl. Med. Mol. Imaging 39(11), 17561766 (2012).
http://dx.doi.org/10.1007/s00259-012-2190-0
137.
137.S. Ahn, L. Cheng, and R. M. Manjeshwar, “Analysis of the effects of errors in attenuation maps on PET quantitation in TOF PET,” IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Seattle, WA, 2014.
138.
138.S. Wollenweber, G. Delso, T. Deller, D. Goldhaber, M. Hüllner, and P. Veit-Haibach, “Characterization of the impact to PET quantification and image quality of an anterior array surface coil for PET/MR imaging,” Magn. Reson. Mater. Phys., Biol. Med. 27(2), 149159 (2014).
http://dx.doi.org/10.1007/s10334-013-0388-1
139.
139.H. Davison, E. E. Ter Voert, F. de Galiza Barbosa, P. Veit-Haibach, and G. Delso, “Incorporation of time-of-flight information reduces metal artifacts in simultaneous positron emission tomography/magnetic resonance imaging: A simulation study,” Invest. Radiol. 50(7), 423429 (2015).
http://dx.doi.org/10.1097/RLI.0000000000000146
140.
140.T. W. Deller, A. M. Grant, M. M. Khalighi, S. H. Maramraju, G. Delso, and C. S. Levin, “PET NEMA performance measurements for a SiPM-based time-of-flight PET/MR system,” IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Seattle, WA, 8–15 November 2014.
141.
141.E. ter Voert, G. Delso, S. Ahn, F. Wiesinger, M. Huellner, and P. Veit-Haibach, “The effect of TOF on PET reconstructions in patients with (metal) implants in simultaneous TOF PET/MR scanning,” in Radiological Society of North America Scientific Assembly and Annual Meeting, Chicago, IL (2014), p. SSK18-06.
142.
142.A. Mehranian and H. Zaidi, “Impact of time-of-flight PET on quantification errors in MRI-based attenuation correction,” J. Nucl. Med. 56(4), 635641 (2015).
http://dx.doi.org/10.2967/jnumed.114.148817
143.
143.K. G. Hollingsworth, “Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction,” Phys. Med. Biol. 60(21), R297R322 (2015).
http://dx.doi.org/10.1088/0031-9155/60/21/R297
144.
144.C. Li, J. Magland, and F. Wehrli, “Compressed sensing 3D ultrashort echo time (COMPUTE) imaging,” Proceedings of the 20th Annual Meeting of ISMRM, 2012.
145.
145.L. Hu, K.-H. Su, G. C. Pereira, A. Grover, B. Traughber, M. Traughber, and R. F. Muzic, “k-space sampling optimization for ultrashort TE imaging of cortical bone: Applications in radiation therapy planning and MR-based PET attenuation correction,” Med. Phys. 41(10), 102301 (9pp.) (2014).
http://dx.doi.org/10.1118/1.4894709
146.
146.R. Galea, R. G. Wells, C. K. Ross, J. Lockwood, K. Moore, J. T. Harvey, and G. H. Isensee, “A comparison of rat SPECT images obtained using 99mTc derived from 99Mo produced by an electron accelerator with that from a reactor,” Phys. Med. Biol. 58(9), 27372750 (2013).
http://dx.doi.org/10.1088/0031-9155/58/9/2737
147.
147.M. Weiger, D. O. Brunner, B. E. Dietrich, C. F. Muller, and K. P. Pruessmann, “ZTE imaging in humans,” Magn. Reson. Med. 70(2), 328332 (2013).
http://dx.doi.org/10.1002/mrm.24816
148.
148.F. Wiesinger, L. I. Sacolick, A. Menini, S. S. Kaushik, S. Ahn, P. Veit-Haibach, G. Delso, and D. D. Shanbhag, “Zero TE MR bone imaging in the head,” Magn. Reson. Med. 75, 107114 (2015).
http://dx.doi.org/10.1002/mrm.25545
149.
149.G. Delso, F. Wiesinger, L. I. Sacolick, S. S. Kaushik, D. D. Shanbhag, M. Hüllner, and P. Veit-Haibach, “Clinical evaluation of zero-echo-time MR imaging for the segmentation of the skull,” J. Nucl. Med. 56(3), 417422 (2015).
http://dx.doi.org/10.2967/jnumed.114.149997
150.
150.F. Gibiino, L. Sacolick, A. Menini, L. Landini, and F. Wiesinger, “Free-breathing, zero-TE MR lung imaging,” Magn. Reson. Mater. Phys., Biol. Med. 28(3), 207215 (2015).
http://dx.doi.org/10.1007/s10334-014-0459-y
151.
151.G. Delso, S. Fürst, B. Jakoby, R. Ladebeck, C. Ganter, S. G. Nekolla, M. Schwaiger, and S. I. Ziegler, “Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner,” J. Nucl. Med. 52(12), 19141922 (2011).
http://dx.doi.org/10.2967/jnumed.111.092726
152.
152.A. Drzezga, M. Souvatzoglou, M. Eiber, A. J. Beer, S. Furst, A. Martinez-Moller, S. G. Nekolla, S. Ziegler, C. Ganter, E. J. Rummeny, and M. Schwaiger, “First clinical experience with integrated whole-body PET/MR: Comparison to PET/CT in patients with oncologic diagnoses,” J. Nucl. Med. 53(6), 845855 (2012).
http://dx.doi.org/10.2967/jnumed.111.098608
153.
153.M. Becker and H. Zaidi, “Imaging in head and neck squamous cell carcinoma: The potential role of PET/MRI,” Br. J. Radiol. 87(1036), 20130677 (2014).
http://dx.doi.org/10.1259/bjr.20130677
154.
154.J. Czernin, L. Ta, and K. Herrmann, “Does PET/MR imaging improve cancer assessments? Literature evidence from more than 900 patients,” J. Nucl. Med. 55(Suppl. 2), 59S62S (2014).
http://dx.doi.org/10.2967/jnumed.114.141838
155.
155.C. Spick, K. Herrmann, and J. Czernin, “18F-FDG PET/CT and PET/MRI perform equally well in cancer patients: Evidence from studies in more than 2300 patients,” J. Nucl. Med. 57, 111 (2016).
156.
156.H. T. van Dam, G. Borghi, S. Seifert, and D. R. Schaart, “Sub-200 ps CRT in monolithic scintillator PET detectors using digital SiPM arrays and maximum likelihood interaction time estimation,” Phys. Med. Biol. 58(10), 32433257 (2013).
http://dx.doi.org/10.1088/0031-9155/58/10/3243
157.
157.K. Doroud, A. Rodriguez, M. C. S. Williams, K. Yamamoto, A. Zichichi, and R. Zuyeuski, “Systematic study of new types of Hamamatsu MPPCs read out with the NINO ASIC,” Nucl. Instrum. Methods Phys. Res., Sect. A 753, 149153 (2014).
http://dx.doi.org/10.1016/j.nima.2014.04.001
158.
158.J.-y. Cui, G. Pratx, S. Prevrhal, and C. S. Levin, “Fully 3D list-mode time-of-flight PET image reconstruction on GPUs using CUDA,” Med. Phys. 38(12), 67756786 (2011).
http://dx.doi.org/10.1118/1.3661998
159.
159.I. Hong, W. Luk, V. Panin, C. Watson, F. Kehren, and M. Casey, “Real-time PET reconstruction,” IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Seattle, WA, 8–15 November 2014.
160.
160.A. Afshar-Oromieh, U. Haberkorn, H. P. Schlemmer, M. Fenchel, M. Eder, M. Eisenhut, B. A. Hadaschik, A. Kopp-Schneider, and M. Röthke, “Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: Initial experience,” Eur. J. Nucl. Med. Mol. Imaging 41(5), 887897 (2014).
http://dx.doi.org/10.1007/s00259-013-2660-z
161.
161.M. Covello, C. Cavaliere, M. Aiello, M. S. Cianelli, M. Mesolella, B. Iorio, A. Rossi, and E. Nicolai, “Simultaneous PET/MR head–neck cancer imaging: Preliminary clinical experience and multiparametric evaluation,” Eur. J. Radiol. 84(7), 12691276 (2015).
http://dx.doi.org/10.1016/j.ejrad.2015.04.010
162.
162.S. Partovi, A. Kohan, J. L. Vercher-Conejero, C. Rubbert, S. Margevicius, M. D. Schluchter, C. Gaeta, P. Faulhaber, and M. R. Robbin, “Qualitative and quantitative performance of 18F-FDG-PET/MRI versus 18F-FDG-PET/CT in patients with head and neck cancer,” Am. J. Neuroradiol. 35(10), 19701975 (2014).
http://dx.doi.org/10.3174/ajnr.A3993
163.
163.A. Varoquaux, O. Rager, A. Poncet, B. M. Delattre, O. Ratib, C. D. Becker, P. Dulguerov, N. Dulguerov, H. Zaidi, and M. Becker, “Detection and quantification of focal uptake in head and neck tumours: 18F-FDG PET/MR versus PET/CT,” Eur. J. Nucl. Med. Mol. Imaging 41(3), 462475 (2014).
http://dx.doi.org/10.1007/s00259-013-2580-y
164.
164.S. I. Lee, O. A. Catalano, and F. Dehdashti, “Evaluation of gynecologic cancer with MR imaging, 18F-FDG PET/CT, and PET/MR imaging,” J. Nucl. Med. 56(3), 436443 (2015).
http://dx.doi.org/10.2967/jnumed.114.145011
165.
165.D. A. Torigian, H. Zaidi, T. C. Kwee, B. Saboury, J. K. Udupa, Z.-H. Cho, and A. Alavi, “PET/MR imaging: Technical aspects and potential clinical applications,” Radiology 267(1), 2644 (2013).
http://dx.doi.org/10.1148/radiol.13121038
166.
166.J. Steinberg, G. Jia, S. Sammet, J. Zhang, N. Hall, and M. V. Knopp, “Three-region MRI-based whole-body attenuation correction for automated PET reconstruction,” Nucl. Med. Biol. 37(2), 227235 (2010).
http://dx.doi.org/10.1016/j.nucmedbio.2009.11.002
167.
167.J. H. Jonsson, M. M. Akhtari, M. G. Karlsson, A. Johansson, T. Asklund, and T. Nyholm, “Accuracy of inverse treatment planning on substitute CT images derived from MR data for brain lesions,” Radiat. Oncol. 10(1), 1319 (2015).
http://dx.doi.org/10.1186/s13014-014-0308-1
168.
168.J. A. Dowling, J. Lambert, J. Parker, O. Salvado, J. Fripp, A. Capp, C. Wratten, J. W. Denham, and P. B. Greer, “An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 83(1), e5e11 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2011.11.056
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/43/3/10.1118/1.4941014
Loading
/content/aapm/journal/medphys/43/3/10.1118/1.4941014
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/43/3/10.1118/1.4941014
2016-02-08
2016-09-29

Abstract

Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography(PET)imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MRimages; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, in contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lungtissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MRimages are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PETimaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial systems will also be discussed.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/43/3/1.4941014.html;jsessionid=SDPgZuB6LmkfCPDBMpY3rBFI.x-aip-live-02?itemId=/content/aapm/journal/medphys/43/3/10.1118/1.4941014&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/43/3/10.1118/1.4941014&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/43/3/10.1118/1.4941014'
Right1,Right2,Right3,