Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/43/3/10.1118/1.4942378
1.
1.B. L. Viglianti, P. Stauffer, E. Repasky, E. Jones, Z. Vujaskovic, and M. W. Dewhirst, “Hyperthermia,” in Holland Frei Cancer Medicine (People’s Medical Publishing House, Shelton, CT, 2010), pp. 528540.
2.
2.P. M. Krawczyk et al., “Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition,” Proc. Natl. Acad. Sci. U. S. A. 108(24), 98519856 (2011).
http://dx.doi.org/10.1073/pnas.1101053108
3.
3.A. L. Oei, L. E. Vriend, J. Crezee, N. A. Franken, and P. M. Krawczyk, “Effects of hyperthermia on DNA repair pathways: One treatment to inhibit them all,” Radiat. Oncol. 10(1), 113 (2015).
http://dx.doi.org/10.1186/s13014-015-0462-0
4.
4.G. Kong, R. D. Braun, and M. W. Dewhirst, “Hyperthermia enables tumor-specific nanoparticle delivery: Effect of particle size,” Cancer Res. 60(16), 44404445 (2000).
5.
5.B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia,” Crit. Rev. Oncol. Hematol. 43(1), 3356 (2002).
http://dx.doi.org/10.1016/S1040-8428(01)00179-2
6.
6.C. C. Vernon et al., “Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: Results from five randomized controlled trials,” Int. J. Radiat. Oncol., Biol., Phys. 35(4), 731744 (1996).
http://dx.doi.org/10.1016/0360-3016(96)00154-x
7.
7.J. van der Zee, D. González, G. C. van Rhoon, J. D. van Dijk, W. L. van Putten, and A. A. Hart, “Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: A prospective, randomised, multicentre trial,” Lancet 355(9210), 11191125 (2000).
http://dx.doi.org/10.1016/S0140-6736(00)02059-6
8.
8.R. D. Issels, L. H. Lindner, J. Verweij, P. Wust, P. Reichardt, B. C. Schem, S. Abdel-Rahman, S. Daugaard, C. Salat, C. M. Wendtner, Z. Vujaskovic, R. Wessalowski, K. W. Jauch, H. R. Durr, F. Ploner, A. Baur-Melnyk, U. Mansmann, W. Hiddemann, J. Y. Blay, and P. Hohenberger, “Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: A randomised phase 3 multicentre study,” Lancet Oncol. 11, 561570 (2010).
http://dx.doi.org/10.1016/S1470-2045(10)70071-1
9.
9.M. R. Horsman and J. Overgaard, “Hyperthermia: A potent enhancer of radiotherapy,” Clin. Oncol. 19(6), 418426 (2007).
http://dx.doi.org/10.1016/j.clon.2007.03.015
10.
10.P. Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, and P. M. Schlag, “Hyperthermia in combined treatment of cancer,” Lancet Oncol. 3(8), 487497 (2002).
http://dx.doi.org/10.1016/S1470-2045(02)00818-5
11.
11.M. H. Falk and R. D. Issels, “Hyperthermia in oncology,” Int. J. Hyperthermia 17(1), 118 (2001).
http://dx.doi.org/10.1080/02656730150201552
12.
12.J. van der Zee, “Heating the patient: A promising approach?,” Ann. Oncol. 13(8), 11731184 (2002).
http://dx.doi.org/10.1093/annonc/mdf280
13.
13.K. Hynynen, A. Darkazanli, E. Unger, and J. F. Schenck, “MRI-guided noninvasive ultrasound surgery,” Med. Phys. 20, 107115 (1993).
http://dx.doi.org/10.1118/1.597093
14.
14.J. A. de Zwart, F. C. Vimeux, C. Delalande, P. Canioni, and C. T. W. Moonen, “Fast lipid-suppressed MR temperature mapping with echo-shifted gradient-echo imaging and spectral-spatial excitation,” Magn. Reson. Med. 42(1), 5359 (1999).
http://dx.doi.org/10.1002/(SICI)1522-2594(199907)42:1<53::AID-MRM9>3.0.CO;2-S
15.
15.C. M. Tempany, E. A. Stewart, N. McDannold, B. J. Quade, F. A. Jolesz, and K. Hynynen, “MR imaging-guided focused ultrasound surgery of uterine leiomyomas: A feasibility study,” Radiology 226, 897905 (2003).
http://dx.doi.org/10.1148/radiol.2271020395
16.
16.J. Hindley, W. M. Gedroyc, L. Regan, E. Stewart, C. Tempany, K. Hynyen, N. McDannold, Y. Inbar, Y. Itzchak, J. Rabinovici, H. S. Kim, J. F. Geschwind, G. Hesley, B. Gostout, T. Ehrenstein, S. Hengst, M. Sklair-Levy, A. Shushan, and F. Jolesz, “MRI guidance of focused ultrasound therapy of uterine fibroids: Early results,” AJR, Am. J. Roentgenol. 183, 17131719 (2004).
http://dx.doi.org/10.2214/ajr.183.6.01831713
17.
17.G. K. Hesley, J. P. Felmlee, J. B. Gebhart, K. T. Dunagan, K. R. Gorny, J. B. Kesler, K. R. Brandt, J. N. Glantz, and B. S. Gostout, “Noninvasive treatment of uterine fibroids: Early Mayo clinic experience with magnetic resonance imaging-guided focused ultrasound,” Mayo Clin. Proc. 81, 936942 (2006).
http://dx.doi.org/10.4065/81.7.936
18.
18.F. M. Fennessy, C. M. Tempany, N. J. McDannold, M. J. So, G. Hesley, B. Gostout, H. S. Kim, G. A. Holland, D. A. Sarti, K. Hynynen, F. A. Jolesz, and E. A. Stewart, “Uterine leiomyomas: MR imaging-guided focused ultrasound surgery–results of different treatment protocols,” Radiology 243, 885893 (2007).
http://dx.doi.org/10.1148/radiol.2433060267
19.
19.E. A. Stewart, B. Gostout, J. Rabinovici, H. S. Kim, L. Regan, C. M. C. Tempany, and the Magnetic Resonance Imaging Guided Focused Ultrasound for Uterine Fibroid Group, “Sustained relief of leiomyoma symptoms by using focused ultrasound surgery,” Obstet. Gynecol. 110(2, Part 1), 279287 (2007).
http://dx.doi.org/10.1097/01.AOG.0000275283.39475.f6
20.
20.Y.-S. Kim, H. Trillaud, H. Rhim, H. K. Lim, W. Mali, M. Voogt, J. Barkhausen, T. Eckey, M. O. Köhler, B. Keserci, C. Mougenot, S. D. Sokka, J. Soini, and H. J. Nieminen, “MR thermometry analysis of sonication accuracy and safety margin of volumetric MR imaging-guided high-intensity focused ultrasound ablation of symptomatic uterine fibroids,” Radiology 265(2), 627637 (2012).
http://dx.doi.org/10.1148/radiol.12111194
21.
21.D. Gianfelice, C. Gupta, W. Kucharczyk, P. Bret, D. Havill, and M. Clemons, “Palliative treatment of painful bone metastases with MR imaging–guided focused ultrasound,” Radiology 249, 355363 (2008).
http://dx.doi.org/10.1148/radiol.2491071523
22.
22.B. Liberman, D. Gianfelice, Y. Inbar, A. Beck, T. Rabin, N. Shabshin, G. Chander, S. Hengst, R. Pfeffer, A. Chechick, A. Hanannel, O. Dogadkin, and R. Catane, “Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: A multicenter study,” Ann. Surg. Oncol. 16(1), 140146 (2009).
http://dx.doi.org/10.1245/s10434-008-0011-2
23.
23.K. Siddiqui, R. Chopra, S. Vedula, L. Sugar, M. Haider, A. Boyes, M. Musquera, M. Bronskill, and L. Klotz, “MRI-guided transurethral ultrasound therapy of the prostate gland using real-time thermal mapping: Initial studies,” Urology 76, 15061511 (2010).
http://dx.doi.org/10.1016/j.urology.2010.04.046
24.
24.R. Chopra, M. Burtnyk, W. A. N’Djin, and M. Bronskill, “MRI-controlled transurethral ultrasound therapy for localised prostate cancer,” Int. J. Hyperthermia 26, 804821 (2010).
http://dx.doi.org/10.3109/02656736.2010.503670
25.
25.C. E. H. Zini, “Ultrasound- and MR-guided focused ultrasound surgery for prostate cancer,” World J. Radiol. 4(6), 247252 (2012).
http://dx.doi.org/10.4329/wjr.v4.i6.247
26.
26.R. Staruch, R. Chopra, and K. Hynynen, “Localised drug release using MRI-controlled focused ultrasound hyperthermia,” Int. J. Hyperthermia 27, 156171 (2011).
http://dx.doi.org/10.3109/02656736.2010.518198
27.
27.A. Partanen, P. S. Yarmolenko, A. Viitala, S. Appanaboyina, D. Haemmerich, A. Ranjan, G. Jacobs, D. Woods, J. Enholm, B. J. Wood, and M. R. Dreher, “Mild hyperthermia with magnetic resonance-guided high-intensity focused ultrasound for applications in drug delivery,” Int. J. Hyperthermia 28(4), 320336 (2012).
http://dx.doi.org/10.3109/02656736.2012.680173
28.
28.H. Grüll and S. Langereis, “Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound,” J. Controlled Release 161, 317327 (2012).
http://dx.doi.org/10.1016/j.jconrel.2012.04.041
29.
29.N. Hijnen, S. Langereis, and H. Grüll, “Magnetic resonance guided high-intensity focused ultrasound for image-guided temperature-induced drug delivery,” Adv. Drug Delivery Rev. 72, 6581 (2014).
http://dx.doi.org/10.1016/j.addr.2014.01.006
30.
30.G. Ter Haar and C. Coussios, “High intensity focused ultrasound: Past, present and future,” Int. J. Hyperthermia 23(2), 8587 (2007).
http://dx.doi.org/10.1080/02656730601185924
31.
31.P. Yarmolenko, E. C. Callardo, A. Partanen, A. Ranjan, D. Woods, A. Negussie, C. Burke, L. Bartels, M. Dewhirst, B. Wood, and M. Dreher, “MR-HIFU drug paintbrush: Large volume, conformal mild hyperthermia with MR-HIFU used to trigger and monitor release from image-able, temperature sensitive liposomes,” in 3rd International Symposium on Current and Future Applications of MR-Guided Focused Ultrasound (FUS Foundation, Bethesda, Washington, DC, 2012), pp. 102103.
32.
32.Y. Ishihara, A. Calderon, H. Watanabe, K. Okamoto, Y. Suzuki, K. Kuroda, and Y. Suzuki, “A precise and fast temperature mapping using water proton chemical shift,” Magn. Reson. Med. 34(6), 814823 (1995).
http://dx.doi.org/10.1002/mrm.1910340606
33.
33.K. K. Vigen, B. L. Daniel, J. M. Pauly, and K. Butts, “Triggered, navigated, multi-baseline method for proton resonance frequency temperature mapping with respiratory motion,” Magn. Reson. Med. 50(5), 10031010 (2003).
http://dx.doi.org/10.1002/mrm.10608
34.
34.S. Hey, G. Maclair, B. D. De Senneville, M. Lepetit-Coiffe, Y. Berber, M. O. Köhler, B. Quesson, C. T. W. Moonen, and M. Ries, “Online correction of respiratory-induced field disturbances for continuous MR-thermometry in the breast,” Magn. Reson. Med. 61(6), 14941499 (2009).
http://dx.doi.org/10.1002/mrm.21954
35.
35.A. M. El-Sharkawy, M. Schär, P. A. Bottomley, and E. Atalar, “Monitoring and correcting spatio-temporal variations of the MR scanner’s static magnetic field,” MAGMA 19(5), 223236 (2006).
http://dx.doi.org/10.1007/s10334-006-0050-2
36.
36.M. O. Köhler, C. Mougenot, B. Quesson, J. Enholm, B. Le Bail, C. Laurent, C. T. Moonen, and G. J. Ehnholm, “Volumetric HIFU ablation under 3D guidance of rapid MRI thermometry,” Med. Phys. 36(8), 35213535 (2009).
http://dx.doi.org/10.1118/1.3152112
37.
37.C. Mougenot, M. O. Kohler, J. Enholm, B. Quesson, and C. Moonen, “Quantification of near-field heating during volumetric MR-HIFU ablation,” Med. Phys. 38, 272282 (2011).
http://dx.doi.org/10.1118/1.3518083
38.
38.P. S. Yarmolenko, E. J. Moon, C. Landon, A. Manzoor, D. W. Hochman, B. L. Viglianti, and M. W. Dewhirst, “Thresholds for thermal damage to normal tissues: An update,” Int. J. Hyperthermia 27(4), 320343 (2011).
http://dx.doi.org/10.3109/02656736.2010.534527
39.
39.S. A. Sapareto and W. C. Dewey, “Thermal dose determination in cancer therapy,” Int. J. Radiat. Oncol., Biol., Phys. 10(6), 787800 (1984).
http://dx.doi.org/10.1016/0360-3016(84)90379-1
40.
40.R. Salomir, J. Palussière, F. C. Vimeux, J. A. de Zwart, B. Quesson, M. Gauchet, P. Lelong, J. Pergrale, N. Grenier, and C. T. Moonen, “Local hyperthermia with MR-guided focused ultrasound: Spiral trajectory of the focal point optimized for temperature uniformity in the target region,” J. Magn. Reson. Imaging 12(4), 571583 (2000).
http://dx.doi.org/10.1002/1522-2586(200010)12:4<571::AID-JMRI9>3.0.CO;2-2
41.
41.M. de Greef, G. Schubert, J. W. Wijlemans, J. Koskela, L. W. Bartels, C. T. W. Moonen, and M. Ries, “Intercostal high intensity focused ultrasound for liver ablation: The influence of beam shaping on sonication efficacy and near-field risks,” Med. Phys. 42(8), 46854697 (2015).
http://dx.doi.org/10.1118/1.4925056
42.
42.J. W. Wijlemans, M. de Greef, G. Schubert, L. W. Bartels, C. T. W. Moonen, M. A. A. J. van den Bosch, and M. Ries, “A clinically feasible treatment protocol for magnetic resonance-guided high-intensity focused ultrasound ablation in the liver,” Invest. Radiol. 50(1), 2431 (2015).
http://dx.doi.org/10.1097/RLI.0000000000000091
43.
43.K. Hynynen, C. J. Martin, D. J. Watmough, and J. R. Mallard, “Errors in temperature measurement by thermocouple probes during ultrasound induced hyperthermia,” Br. J. Radiol. 56(672), 969970 (1983).
http://dx.doi.org/10.1259/0007-1285-56-672-969
44.
44.B. D. de Senneville, S. Roujol, C. Moonen, and M. Ries, “Motion correction in MR thermometry of abdominal organs: A comparison of the referenceless vs. the multibaseline approach,” Magn. Reson. Med. 64, 13731381 (2010).
http://dx.doi.org/10.1002/mrm.22514
45.
45.M. J. Park, Y.-S. Kim, H. Rhim, and H. K. Lim, “Technique to displace bowel loops in MRI-guided high-intensity focused ultrasound ablation of fibroids in the anteverted or anteflexed uterus,” AJR, Am. J. Roentgenol. 201(5), W761W764 (2013).
http://dx.doi.org/10.2214/AJR.12.10081
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/43/3/10.1118/1.4942378
Loading
/content/aapm/journal/medphys/43/3/10.1118/1.4942378
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/43/3/10.1118/1.4942378
2016-02-29
2016-09-26

Abstract

Mild hyperthermia can be used as an adjuvant therapy to enhance radiation therapy or chemotherapy of cancer. However, administering mild hyperthermia is technically challenging due to the high accuracy required of the temperature control. MR guided high-intensity focused ultrasound (MR-HIFU) is a technology that can address this challenge. In this work, accurate and spatially uniform mild hyperthermia is demonstrated for deep-seated clinically relevant heating volumes using a HIFU system under MR guidance.

Mild hyperthermia heating was evaluated for temperature accuracy and spatial uniformity in 11 porcine leg experiments. Hyperthermia was induced with a commercial Philips Sonalleve MR-HIFU system embedded in a 1.5T Ingenia MR scanner. The operating software was modified to allow extended duration mild hyperthermia. Heating time varied from 10 min up to 60 min and the assigned target temperature was 42.5 °C. Electronic focal point steering, mechanical transducer movement, and dynamic transducer element switch-off were exploited to enlarge the heated volume and obtain uniform heating throughout the acoustic beam path. Multiple temperature mapping images were used to control and monitor the heating. The magnetic field drift and transducer susceptibility artifacts were compensated to enable accurate volumetric MR thermometry.

The obtained mean temperature for the target area (the cross sectional area of the heated volume at focal depth primarily used to control the heating) was on average 42.0 ± 0.6 °C. Temperature uniformity in the target area was evaluated using 10 and 90, which were 43.1 ± 0.6 and 40.9 ± 0.6 °C, respectively. For the near field, the corresponding temperatures were 39.3 ± 0.8 °C (average), 40.6 ± 1.0 °C (10), and 38.0 ± 0.9 °C (90). The sonications resulted in a concise heating volume, typically in the shape of a truncated cone. The average depth reached from the skin was 86.9 mm. The results show that the heating algorithm was able to induce deep heating while keeping the near-field temperature uniform and at a safe level.

The capability of MR-HIFU to induce accurate, spatially uniform, and robust mild hyperthermia in large deep-seated volumes was successfully demonstrated through a series of animal experiments.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/43/3/1.4942378.html;jsessionid=mrcNh4AiquNgpVO-s1HJ02y5.x-aip-live-03?itemId=/content/aapm/journal/medphys/43/3/10.1118/1.4942378&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/43/3/10.1118/1.4942378&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/43/3/10.1118/1.4942378'
Right1,Right2,Right3,