Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/43/3/10.1118/1.4942381
1.
1.P. Bhatnagar, M. Subesinghe, C. Patel, R. Prestwich, and A. F. Scarsbrook, “Functional imaging for radiation treatment planning, response assessment, and adaptive therapy in head and neck cancer,” RadioGraphics 33, 19091929 (2013).
http://dx.doi.org/10.1148/rg.337125163
2.
2.C. Tsien, Y. Cao, and T. Chenevert, “Clinical applications for diffusion magnetic resonance imaging in radiotherapy,” Semin. Radiat. Oncol. 24, 218226 (2014).
http://dx.doi.org/10.1016/j.semradonc.2014.02.004
3.
3.A. A. Malayeri, R. H. El Khouli, A. Zaheer, M. A. Jacobs, C. P. Corona-Villalobos, I. R. Kamel, and K. J. Macura, “Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up,” RadioGraphics 31, 17731791 (2011).
http://dx.doi.org/10.1148/rg.316115515
4.
4.G. Decker et al., “Intensity-modulated radiotherapy of the prostate: Dynamic ADC monitoring by DWI at 3.0 T,” Radiother. Oncol. 113, 115120 (2014).
http://dx.doi.org/10.1016/j.radonc.2014.07.016
5.
5.J. Il Yu, H. C. Park, D. H. Lim, Y. Choi, S. H. Jung, S. W. Paik, S. H. Kim, W. K. Jeong, and Y. K. Kim, “The role of diffusion-weighted magnetic resonance imaging in the treatment response evaluation of hepatocellular carcinoma patients treated with radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 89, 814821 (2014).
http://dx.doi.org/10.1016/j.ijrobp.2014.03.020
6.
6.F. Kuang, Z. Yan, J. Wang, and Z. Rao, “The value of diffusion-weighted MRI to evaluate the response to radiochemotherapy for cervical cancer,” Magn. Reson. Imaging 32, 342349 (2014).
http://dx.doi.org/10.1016/j.mri.2013.12.007
7.
7.S. Kim, L. Loevner, H. Quon, E. Sherman, G. Weinstein, A. Kilger, and H. Poptani, “Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck,” Clin. Cancer Res. 15, 986994 (2009).
http://dx.doi.org/10.1158/1078-0432.CCR-08-1287
8.
8.P. Kupelian and J.-J. Sonke, “Magnetic resonance-guided adaptive radiotherapy: A solution to the future,” Semin. Radiat. Oncol. 24, 227232 (2014).
http://dx.doi.org/10.1016/j.semradonc.2014.02.013
9.
9.L. Liu, N. Wu, H. Ouyang, J.-R. Dai, and W.-H. Wang, “Diffusion-weighted MRI in early assessment of tumour response to radiotherapy in high-risk prostate cancer,” Br. J. Radiol. 87, 20140359 (2014).
http://dx.doi.org/10.1259/bjr.20140359
10.
10.A. D. King, K.-K. Chow, K.-H. Yu, F. K. F. Mo, D. K. W. Yeung, J. Yuan, K. S. Bhatia, A. C. Vlantis, and A. T. Ahuja, “Head and neck squamous cell carcinoma: Diagnostic performance of diffusion-weighted MR imaging for the prediction of treatment response,” Radiology 266, 531538 (2013).
http://dx.doi.org/10.1148/radiol.12120167
11.
11.S. Mutic and J. F. Dempsey, “The ViewRay system: Magnetic resonance-guided and controlled radiotherapy,” Semin. Radiat. Oncol. 24, 196199 (2014).
http://dx.doi.org/10.1016/j.semradonc.2014.02.008
12.
12.F. Barchetti, N. Pranno, G. Giraldi, A. Sartori, S. Gigli, G. Barchetti, L. Lo Mele, and L. T. Marsella, “The role of 3 Tesla diffusion-weighted imaging in the differential diagnosis of benign versus malignant cervical lymph nodes in patients with head and neck squamous cell carcinoma,” BioMed Res. Int. 2014, Article ID 532095 (9pp.) (2014).
http://dx.doi.org/10.1155/2014/532095
13.
13.L. Mannelli, S. Nougaret, H. A. Vargas, and R. K. G. Do, “Advances in diffusion-weighted imaging,” Radiol. Clin. North Am. 53, 569581 (2015).
http://dx.doi.org/10.1016/j.rcl.2015.01.002
14.
14.D. Le Bihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis, and M. Laval-Jeantet, “MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders,” Radiology 161, 401407 (1986).
http://dx.doi.org/10.1148/radiology.161.2.3763909
15.
15.A. J. E. Raaijmakers, B. W. Raaymakers, and J. J. W. Lagendijk, “Integrating a MRI scanner with a 6 MV radiotherapy accelerator: Dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons,” Phys. Med. Biol. 50, 13631376 (2005).
http://dx.doi.org/10.1088/0031-9155/50/7/002
16.
16.D. C. Zheng, Y. B. Chen, Y. Chen, L. Y. Xu, F. J. Lin, J. Lin, C. B. Huang, and J. J. Pan, “Early assessment of induction chemotherapy response of nasopharyngeal carcinoma by pretreatment diffusion-weighted magnetic resonance imaging,” J. Comput. Assisted Tomogr. 37, 673680 (2013).
http://dx.doi.org/10.1097/RCT.0b013e31829a2599
17.
17.V. Vandecaveye, P. Dirix, F. De Keyzer, K. O. de Beeck, V. Vander Poorten, E. Hauben, M. Lambrecht, S. Nuyts, and R. Hermans, “Diffusion-weighted magnetic resonance imaging early after chemoradiotherapy to monitor treatment response in head-and-neck squamous cell carcinoma,” Int. J. Radiat. Oncol., Biol., Phys. 82, 10981107 (2012).
http://dx.doi.org/10.1016/j.ijrobp.2011.02.044
18.
18.B. W. Raaymakers et al., “Integrating 1.5 T MRI scanner with a 6 MV accelerator: Proof of concept,” Phys. Med. Biol. 54, N229N237 (2009).
http://dx.doi.org/10.1088/0031-9155/54/12/N01
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/43/3/10.1118/1.4942381
Loading
/content/aapm/journal/medphys/43/3/10.1118/1.4942381
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/43/3/10.1118/1.4942381
2016-02-23
2016-09-29

Abstract

To demonstrate the preliminary feasibility of a longitudinal diffusionmagnetic resonance imaging(MRI) strategy for assessing patient response to radiotherapy at 0.35 T using an MRI-guided radiotherapy system (ViewRay).

Six patients (three head and neck cancer, three sarcoma) who underwent fractionated radiotherapy were enrolled in this study. A 2D multislice spin echo single-shot echo planar imaging diffusion pulse sequence was implemented on the ViewRay system and tested in phantom studies. The same pulse sequence was used to acquire longitudinal diffusion data (every 2–5 fractions) on the six patients throughout the entire course of radiotherapy. The reproducibility of the apparent diffusion coefficient (ADC) measurements was assessed using reference regions and the temporal variations of the tumor ADC values were evaluated.

In diffusion phantom studies, the ADC values measured on the ViewRay system matched well with reference ADC values with <5% error for a range of ground truth diffusion coefficients of 0.4–1.1 × 10−3 mm2/s. The remote reference regions (i.e., brainstem in head and neck patients) had consistent ADC values throughout the therapy for all three head and neck patients, indicating acceptable reproducibility of the diffusion imaging sequence. The tumor ADC values changed throughout therapy, with the change differing between patients, ranging from a 40% drop in ADC within the first week of therapy to gradually increasing throughout therapy. For larger tumors, intratumoral heterogeneity was observed. For one sarcoma patient, postradiotherapy biopsy showed less than 10% necrosis score, which correlated with the observed 40% decrease in ADC from the fifth fraction to the eighth treatment fraction.

This pilot study demonstrated that longitudinal diffusionMRI is feasible using the 0.35 T ViewRay MRI. Larger patient cohort studies are warranted to correlate the longitudinal diffusion measurements to patient outcomes. Such an approach may enable response-guided adaptive radiotherapy.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/43/3/1.4942381.html;jsessionid=kj_WMteQRbR9fp39KOdWsQnz.x-aip-live-06?itemId=/content/aapm/journal/medphys/43/3/10.1118/1.4942381&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/43/3/10.1118/1.4942381&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/43/3/10.1118/1.4942381'
Right1,Right2,Right3,