Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/43/4/10.1118/1.4944064
1.
1.D. Yan, E. Ziaja, D. Jaffray, J. Wong, D. Brabbins, F. Vincini, and A. Martinez, “The use of adaptive radiation therapy to reduce setup error: A prospective clinical study,” Int. J. Radiat. Oncol., Biol., Phys. 41, 715720 (1998).
http://dx.doi.org/10.1016/S0360-3016(97)00567-1
2.
2.Q. J. Wu, T. Li, Q. Wu, and F. F. Yin, “Adaptive radiation therapy: Technical components and clinical applications,” Cancer J. 17, 182189 (2011).
http://dx.doi.org/10.1097/PPO.0b013e31821da9d8
3.
3.E. K. Hansen, M. K. Bucci, J. M. Quivey, V. Weinberg, and P. Xia, “Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer,” Int. J. Radiat. Oncol., Biol., Phys. 64, 355362 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2005.07.957
4.
4.D. J. Fraser, Y. Chen, E. Poon, F. L. Cury, T. Falco, and F. Verhaegen, “Dosimetric consequences of misalignment and realignment in prostate 3DCRT using intramodality ultrasound image guidance,” Med. Phys. 37, 27872795 (2010).
http://dx.doi.org/10.1118/1.3429127
5.
5.D. J. Fraser, P. Wong, K. Sultanem, and F. Verhaegen, “Dosimetric evolution of the breast electron boost target using 3D ultrasound imaging,” Radiother. Oncol. 96, 185191 (2010).
http://dx.doi.org/10.1016/j.radonc.2010.05.017
6.
6.S. Van Kranen, A. Mencarelli, S. Van Beek, C. Rasch, M. Van Herk, and J. J. Sonke, “Adaptive radiotherapy with an average anatomy model: Evaluation and quantification of residual deformations in head and neck cancer patients,” Radiother. Oncol. 109, 463468 (2013).
http://dx.doi.org/10.1016/j.radonc.2013.08.007
7.
7.Y. Yang, E. Schreibmann, T. Li, C. Wang, and L. Xing, “Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation,” Phys. Med. Biol. 52, 685705 (2007).
http://dx.doi.org/10.1088/0031-9155/52/3/011
8.
8.S. F. Petit, W. J. van Elmpt, S. M. Nijsten, P. Lambin, and A. L. Dekker, “Calibration of megavoltage cone-beam CT for radiotherapy dose calculations: Correction of cupping artifacts and conversion of CT numbers to electron density,” Med. Phys. 35, 849865 (2008).
http://dx.doi.org/10.1118/1.2836945
9.
9.A. Richter, Q. Hu, D. Steglich, K. Baier, J. Wilbert, M. Guckenberger, and M. Flentje, “Investigation of the usability of conebeam CT data sets for dose calculation,” Radiat. Oncol. 3, 42 (13pp.) (2008).
http://dx.doi.org/10.1186/1748-717X-3-42
10.
10.W. van Elmpt, S. Petit, D. De Ruysscher, P. Lambin, and A. Dekker, “3D dose delivery verification using repeated cone-beam imaging and EPID dosimetry for stereotactic body radiotherapy of non-small cell lung cancer,” Radiother. Oncol. 94, 188194 (2010).
http://dx.doi.org/10.1016/j.radonc.2009.12.024
11.
11.M. Moteabbed, G. C. Sharp, Y. Wang, A. Trofimov, J. A. Efstathiou, and H. M. Lu, “Validation of a deformable image registration technique for cone beam CT-based dose verification,” Med. Phys. 42, 196205 (2015).
http://dx.doi.org/10.1118/1.4903292
12.
12.C. Veiga, J. McClelland, S. Moinuddin, A. Lourenço, K. Ricketts, J. Annkah, M. Modat, S. Ourselin, D. D’Souza, and G. Royle, “Toward adaptive radiotherapy for head and neck patients: Feasibility study on using CT-to-CBCT deformable registration for ‘dose of the day’ calculations,” Med. Phys. 41, 031703 (12pp.) (2014).
http://dx.doi.org/10.1118/1.4864240
13.
13.J. Hatton, B. Mccurdy, and P. B. Greer, “Cone beam computerized tomography: The effect of calibration of the Hounsfield unit number to electron density on dose calculation accuracy for adaptive radiation therapy,” Phys. Med. Biol. 54, 329346 (2009).
http://dx.doi.org/10.1088/0031-9155/54/15/N01
14.
14.S. Yoo and F. F. Yin, “Dosimetric feasibility of cone-beam CT-based treatment planning compared to CT-based treatment planning,” Int. J. Radiat. Oncol., Biol., Phys. 66, 15531561 (2006).
http://dx.doi.org/10.1016/j.ijrobp.2006.08.031
15.
15.C. Houser, A. O. Nawaz, J. Galvin, and Y. Xiao, “TH-D-ValA-04: Quantitative evaluation of cone beam CT data used for treatment planning,” Med. Phys. 33, 22852286 (2006).
http://dx.doi.org/10.1118/1.2241926
16.
16.R. Shekhar and V. Zagrodsky, “Mutual information-based rigid and nonrigid registration of ultrasound volumes,” IEEE Trans. Med. Imaging 21, 922 (2002).
http://dx.doi.org/10.1109/42.981230
17.
17.X. Pennec, P. Cachier, N. Ayache, X. Pennec, P. Cachier, N. Ayache, and T. Brain, “Tracking brain deformations in time-sequences of 3D US images,” Pattern Recognit. Lett. 24, 801813 (2003).
http://dx.doi.org/10.1016/S0167-8655(02)00183-6
18.
18.S. van der Meer, E. Bloemen-van Gurp, J. Hermans, R. Voncken, D. Heuvelmans, C. Gubbels, D. Fontanarosa, P. Visser, L. Lutgens, F. van Gils, and F. Verhaegen, “Critical assessment of intramodality 3D ultrasound imaging for prostate IGRT compared to fiducial markers,” Med. Phys. 40, 071707 (11pp.) (2013).
http://dx.doi.org/10.1118/1.4808359
19.
19.S. van der Meer, E. Seravalli, D. Fontanarosa, E. J. B.-v. Gurp, and F. Verhaegen, “Consequences of intermodality registration errors for intramodality 3D ultrasound IGRT,” Technol. Cancer Res. Treat. (2015) [E-pub ahead of print].
http://dx.doi.org/10.1177/1533034615588198
20.
20.S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P. W. Pluim, “Elastix: A toolbox for intensity-based medical image registration,” IEEE Trans. Med. Imaging 29, 196205 (2010).
http://dx.doi.org/10.1109/TMI.2009.2035616
21.
21.D. Shamonin, E. Bron, B. P. F. Lelieveldt, M. Smits, S. Klein, and M. Staring, “Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer’s disease,” Front. Neuroinf. 7, Article 50 (15pp.) (2013).
http://dx.doi.org/10.3389/fninf.2013.00050
22.
22.M. J. Ghilezan, D. A. Jaffray, J. H. Siewerdsen, M. Van Herk, A. Shetty, M. B. Sharpe, S. Z. Jafri, F. A. Vicini, R. C. Matter, D. S. Brabbins, and A. A. Martinez, “Prostate gland motion assessed with cine-magnetic resonance imaging (cine-MRI),” Int. J. Radiat. Oncol., Biol., Phys. 62, 406417 (2005).
http://dx.doi.org/10.1016/j.ijrobp.2003.10.017
23.
23.See supplementary material at http://dx.doi.org/10.1118/1.4944064 for basic deformable registration parameter files and additional results for anus and rectum, bladder, and body contours.[Supplementary Material]
24.
24.M. Staring, S. Klein, and J. P. W. Pluim, “A rigidity penalty term for nonrigid registration,” Med. Phys. 34, 40984108 (2007).
http://dx.doi.org/10.1118/1.2776236
25.
25.G. Gerig, M. Jomier, and M. Chakos, “Valmet: A new validation tool for assessing and improving 3D object segmentation,” in 4th International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, Berlin Heidelberg, 2001), pp. 516523.
26.
26.D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, “A technique for the quantitative evaluation of dose distributions,” Med. Phys. 25, 656661 (1998).
http://dx.doi.org/10.1118/1.598248
27.
27.D. A. Low and J. F. Dempsey, “Evaluation of the gamma dose distribution comparison method,” Med. Phys. 30, 24552464 (2003).
http://dx.doi.org/10.1118/1.1598711
28.
28.L. C. G. G. Persoon, M. Podesta, W. J. C. van Elmpt, S. M. J. J. G. Nijsten, and F. Verhaegen, “A fast three-dimensional gamma evaluation using a GPU utilizing texture memory for on-the-fly interpolations,” Med. Phys. 38, 40324035 (2011).
http://dx.doi.org/10.1118/1.3595114
29.
29.M. Podesta, L. C. Persoon, and F. Verhaegen, “A novel time dependent gamma evaluation function for dynamic 2D and 3D dose distributions,” Phys. Med. Biol. 59, 59735985 (2014).
http://dx.doi.org/10.1088/0031-9155/59/20/5973
30.
30.S. J. Thomas, “Relative electron density calibration of CT scanners for radiotherapy treatment planning,” Br. J. Radiol. 72, 781786 (1999).
http://dx.doi.org/10.1259/bjr.72.860.10624344
31.
31.M. Fippel, “Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm,” Med. Phys. 26, 14661475 (1999).
http://dx.doi.org/10.1118/1.598676
32.
32.W. J. C. van Elmpt, S. M. J. J. G. Nijsten, R. F. H. Schiffeleers, A. L. A. J. Dekker, B. J. Mijnheer, P. Lambin, and A. W. H. A. Minken, “Monte Carlo based three-dimensional dose reconstruction method derived from portal dose images,” Med. Phys. 33, 24262434 (2006).
http://dx.doi.org/10.1118/1.2207315
33.
33.M. Baker and C. F. Behrens, “Prostate displacement during transabdominal ultrasound image-guided radiotherapy assessed by real-time four-dimensional transperineal monitoring,” Acta Oncol. 54, 15081514 (2015).
http://dx.doi.org/10.3109/0284186X.2015.1061208
34.
34.B. J. Salter, B. Wang, M. W. Szegedi, P. Rassiah-Szegedi, D. C. Shrieve, R. Cheng, and M. Fuss, “Evaluation of alignment error due to a speed artifact in stereotactic ultrasound image guidance,” Phys. Med. Biol. 53, N437N445 (2008).
http://dx.doi.org/10.1088/0031-9155/53/23/N03
35.
35.D. Fontanarosa, S. van der Meer, E. Harris, and F. Verhaegen, “A CT based correction method for speed of sound aberration for ultrasound based image guided radiotherapy,” Med. Phys. 38, 26652673 (2011).
http://dx.doi.org/10.1118/1.3583475
36.
36.D. Fontanarosa, S. van der Meer, E. Bloemen-van Gurp, G. Stroian, and F. Verhaegen, “Magnitude of speed of sound aberration corrections for ultrasound image guided radiotherapy for prostate and other anatomical sites,” Med. Phys. 39, 52865292 (2012).
http://dx.doi.org/10.1118/1.4737571
37.
37.D. Fontanarosa, S. van der Meer, and F. Verhaegen, “On the significance of density-induced speed of sound variations on US-guided radiotherapy,” Med. Phys. 39, 63166323 (2012).
http://dx.doi.org/10.1118/1.4754650
38.
38.D. Fontanarosa, S. Pesente, F. Pascoli, D. Ermacora, I. A. Rumeileh, and F. Verhaegen, “A speed of sound aberration correction algorithm for curvilinear ultrasound transducers in ultrasound-based image-guided radiotherapy,” Phys. Med. Biol. 58, 13411360 (2013).
http://dx.doi.org/10.1088/0031-9155/58/5/1341
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/43/4/10.1118/1.4944064
Loading
/content/aapm/journal/medphys/43/4/10.1118/1.4944064
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/43/4/10.1118/1.4944064
2016-03-25
2016-09-27

Abstract

Imaging of patient anatomy during treatment is a necessity for position verification and for adaptive radiotherapy based on daily dose recalculation. Ultrasound(US)image guided radiotherapy systems are currently available to collect USimages at the simulation stage (US), coregistered with the simulation computed tomography(CT), and during all treatment fractions. The authors hypothesize that a deformation field derived from US-based deformable image registration can be used to create a daily pseudo-CT (CT) image that is more representative of the patients’ geometry during treatment than the CT acquired at simulation stage (CT).

The three prostate patients, considered to evaluate this hypothesis, had coregistered CT and US scans on various days. In particular, two patients had two US–CT datasets each and the third one had five US–CT datasets. Deformation fields were computed between pairs of USimages of the same patient and then applied to the corresponding US scan to yield a new deformed CT scan. The original treatment plans were used to recalculate dose distributions in the simulation, deformed and ground truth CT(CT) images to compare dice similarity coefficients, maximum absolute distance, and mean absolute distance on CT delineations and gamma index () evaluations on both the Hounsfield units (HUs) and the dose.

In the majority, deformation did improve the results for all three evaluation methods. The change in gamma failure for dose (, 3%, 3 mm) ranged from an improvement of 11.2% in the prostate volume to a deterioration of 1.3% in the prostate and bladder. The change in gamma failure for the CTimages (, 50 HU, 3 mm) ranged from an improvement of 20.5% in the anus and rectum to a deterioration of 3.2% in the prostate.

This new technique may generate CTimages that are more representative of the actual patient anatomy than the CT scan.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/43/4/1.4944064.html;jsessionid=UY116DifH79P7W3zX1ZVcPsr.x-aip-live-02?itemId=/content/aapm/journal/medphys/43/4/10.1118/1.4944064&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/43/4/10.1118/1.4944064&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/43/4/10.1118/1.4944064'
Right1,Right2,Right3,