Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. K. Heye, R. D. Culling, C. V. Hernández, M. J. Thrippleton, and J. M. Wardlaw, “Assessment of blood—Brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review,” NeuroImage: Clin. 6, 262274 (2014).
2.J. P. B. O’Connor, A. Jackson, G. J. M. Parker, C. Roberts, and G. C. Jayson, “Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies,” Nat. Rev. Clin. Oncol. 9(3), 167177 (2012).
3.P. S. Tofts and A. G. Kermode, “Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging. I. Fundamental concepts,” Magn. Reson. Med. 17(2), 357367 (1991).
4.P. S. Tofts, G. Brix, D. L. Buckley, J. L. Evelhoch, E. Henderson, M. V. Knopp, H. B. Larsson, T. Y. Lee, and R. M. Weisskoff, “Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: Standardized quantities and symbols,” J. Magn. Reson. Imaging 10(3), 223232 (1999).<223::AID-JMRI2>3.0.CO;2-S
5.H. B. Larsson, M. Stubgaard, J. L. Frederiksen, M. Jensen, O. Henriksen, and O. B. Paulson, “Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors,” Magn. Reson. Med. 16, 117131 (1990).
6.M. Law, S. Yang, J. S. Babb, E. A. Knopp, J. G. Golfinos, D. Zagzag, and G. Johnson, “Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade,” Am. J. Neuroradiol. 25, 746755 (2004).
7.S. Yang, M. Law, D. Zagzag, H. H. Wu, S. Cha, J. G. Golfinos, E. A. Knopp, and G. Johnson, “Dynamic contrast-enhanced perfusion MR imaging measurements of endothelial permeability: Differentiation between atypical and typical meningiomas,” Am. J. Neuroradiol. 24(8), 15541559 (2003).
8.S. P. Cramer, H. Simonsen, J. L. Frederiksen, E. Rostrup, and H. B. W. Larsson, “Abnormal blood-brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI,” NeuroImage: Clin. 4, 182189 (2014).
9.A. Montagne, S. R. Barnes, M. Law, B. V. Zlokovic, A. Montagne, S. R. Barnes, M. D. Sweeney, M. R. Halliday, and H. C. Chui, “Blood-brain barrier breakdown in the aging human report blood-brain barrier breakdown in the aging human hippocampus,” Neuron 85(2), 296302 (2015).
10.R. H. El Khouli, K. J. Macura, M. A. Jacobs, T. H. Khalil, I. R. Kamel, A. Dwyer, and D. A. Bluemke, “Dynamic contrast-enhanced MRI of the breast: Quantitative method for kinetic curve type assessment,” Am. J. Roentgenol. 193(4), W295W300 (2009).
11.A. B. Rosenkrantz, R. P. Lim, M. Haghighi, M. B. Somberg, J. S. Babb, and S. S. Taneja, “Comparison of interreader reproducibility of the prostate imaging reporting and data system and Likert scales for evaluation of multiparametric prostate MRI,” AJR, Am. J. Roentgenol. 201(4), W612W618 (2013).
12.M. S. Shiroishi, M. Habibi, D. Rajderkar, C. Yurko, J. L. Go, A. Lerner, M. A. Mogensen, P. E. Kim, and M. Law, “Perfusion and permeability MR imaging of gliomas,” Technol. Cancer Res. Treat. 10, 5971 (2011).
13.M. J. Paldino and D. P. Barboriak, “Fundamentals of quantitative dynamic contrast-enhanced MR imaging,” Magn. Reson. Imaging Clin. North Am. 17, 277289 (2009).
14.J. C. Miller, H. H. Pien, D. Sahani, A. G. Sorensen, and J. H. Thrall, “Imaging angiogenesis: Applications and potential for drug development,” J. Natl. Cancer Inst. 97, 172187 (2005).
15.A. A. Thomas, J. Arevalo-Perez, T. Kaley, J. Lyo, K. K. Peck, W. Shi, Z. Zhang, and R. J. Young, “Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma,” J. Neuro-Oncol. 125(1), 183190 (2015).
16.S. P. Cramer and H. B. W. Larsson, “Accurate determination of blood-brain barrier permeability using dynamic contrast-enhanced T1-weighted MRI: A simulation and in vivo study on healthy subjects and multiple sclerosis patients,” J. Cereb. Blood Flow Metab. 34, 16551665 (2014).
17.A. B. Rosenkrantz, C. Geppert, R. Grimm, T. K. Block, C. Glielmi, L. Feng, R. Otazo, J. M. Ream, and H. Chandarana, “Dynamic contrast-enhanced MRI of the prostate with high spatiotemporal resolution using compressed sensing, parallel imaging, and continuous golden-angle radial sampling: Preliminary experience,” J. Magn. Reson. Imaging 41, 13651373 (2015).
18.M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58(6), 11821195 (2007).
19.S. P. Awate and E. V. R. DiBella, “Spatiotemporal dictionary learning for undersampled dynamic MRI reconstruction via joint frame-based and dictionary-based sparsity,” 9th IEEE International Symposium on Biomedical Imaging (IEEE, ISBI, 2012), pp. 318321.
20.J. Caballero, A. N. Price, D. Rueckert, and J. V. Hajnal, “Dictionary learning and time sparsity for dynamic MR data reconstruction,” IEEE Trans. Med. Imaging 33(4), 979994 (2014).
21.U. Gamper, P. Boesiger, and S. Kozerke, “Compressed sensing in dynamic MRI,” Magn. Reson. Med. 59(2), 365373 (2008).
22.H. Jung, K. Sung, K. S. Nayak, E. Y. Kim, and J. C. Ye, “k-t FOCUSS: A general compressed sensing framework for high resolution dynamic MRI,” Magn. Reson. Med. 61(1), 103116 (2009).
23.K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, “SENSE: Sensitivity encoding for fast MRI,” Magn. Reson. Med. 42(5), 952962 (1999).<952::AID-MRM16>3.3.CO;2-J
24.M. Lustig and J. M. Pauly, “SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space,” Magn. Reson. Med. 64(2), 457471 (2010).
25.M. Uecker, P. Lai, M. J. Murphy, P. Virtue, M. Elad, J. M. Pauly, S. S. Vasanawala, and M. Lustig, “ESPIRiT—An eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA,” Magn. Reson. Med. 71, 9901001 (2014).
26.L. Feng, R. Grimm, K. T. Block, H. Chandarana, S. Kim, J. Xu, L. Axel, D. K. Sodickson, and R. Otazo, “Golden-angle radial sparse parallel MRI: Combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI,” Magn. Reson. Med. 72(1), 707717 (2014).
27.T. Zhang, J. Y. Cheng, A. G. Potnick, R. A. Barth, M. T. Alley, M. Uecker, M. Lustig, J. M. Pauly, and S. S. Vasanawala, “Fast pediatric 3D free-breathing abdominal dynamic contrast enhanced MRI with high spatiotemporal resolution,” J. Magn. Reson. Imaging 41(2), 460473 (2015).
28.H. Wang, Y. Miao, K. Zhou, Y. Yu, S. Bao, Q. He, Y. Dai, S. Y. Xuan, and J. Hu, “Feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory,” Med. Phys. 37(9), 49714981 (2010).
29.A. V. Barger, W. F. Block, Y. Toropov, T. M. Grist, and C. A. Mistretta, “Time-resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory,” Magn. Reson. Med. 48(2), 297305 (2002).
30.C. R. Haider, H. H. Hu, N. G. Campeau, J. Huston, and S. J. Riederer, “3D high temporal and spatial resolution contrast-enhanced MR angiography of the whole brain,” Magn. Reson. Med. 60(3), 749760 (2008).
31.J. D. Trzasko, C. R. Haider, E. A. Borisch, N. G. Campeau, J. F. Glockner, S. J. Riederer, and A. Manduca, “Sparse-CAPR: Highly accelerated 4D CE-MRA with parallel imaging and nonconvex compressive sensing,” Magn. Reson. Med. 66(4), 10191032 (2011).
32.G. R. Lee, N. Seiberlich, J. L. Sunshine, T. J. Carroll, and M. A. Griswold, “Rapid time-resolved magnetic resonance angiography via a multiecho radial trajectory and GraDeS reconstruction,” Magn. Reson. Med. 69(2), 346359 (2013).
33.R. M. Lebel, J. Jones, J.-C. Ferre, M. Law, and K. S. Nayak, “Highly accelerated dynamic contrast enhanced imaging,” Magn. Reson. Med. 71, 635644 (2014).
34.S. Winkelmann, T. Schaeffter, T. Koehler, H. Eggers, and O. Doessel, “An optimal radial profile order based on the golden ratio for time-resolved MRI,” IEEE Trans. Med. Imaging 26(1), 6876 (2007).
35.M. Doneva, C. Stehning, K. Nehrke, and P. Börnert, “Improving scan efficiency of respiratory gated imaging using compressed sensing with 3D Cartesian golden angle sampling,” in ISMRM (Proc. ISMRM, 2011), Vol. 19, p. 641.
36.Y. Zhu, Y. Guo, R. M. Lebel, M. Law, and K. S. Nayak, “Randomized golden ratio sampling for highly accelerated dynamic imaging,” in ISMRM (Proc. ISMRM, 2014), Vol.22, p. 4365.
37.S. C. L. Deoni, “High-resolution T1 mapping of the brain at 3T with driven equilibrium single pulse observation of T1 with high-speed incorporation of RF field inhomogeneities (DESPOT1-HIFI),” J. Magn. Reson. Imaging 26(4), 11061111 (2007).
38.Y. Zhu, Y. Guo, S. G. Lingala, R. Marc Lebel, M. Law, and K. S. Nayak, “GOCART: Golden-angle Cartesian randomized time-resolved 3D MRI,” Magn. Reson. Imaging (2015).
39.S. Ramani and J. Fessler, “Parallel MR image reconstruction using augmented Lagrangian methods,” IEEE Trans. Med. Imaging 30(3), 694706 (2011).
40.M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast image recovery using variable splitting and constrained optimization,” IEEE Trans. Image Process. 19(9), 23452356 (2010).
41.M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems,” IEEE Trans. Image Process. 20(3), 681695 (2011).
42.P. C. Hansen and D. Prost O’Leary, “The use of the l-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14(6), 14871503 (1993).
43.N. U. Lin, E. Q. Lee, H. Aoyama, I. J. Barani, D. P. Barboriak, B. G. Baumert, M. Bendszus, P. D. Brown, and P. Y. Wen, “Response assessment criteria for brain metastases: Proposal from the RANO group,” Lancet Oncol. 16(6), e270e278 (2015).
44.B. M. Ellingson, M. Bendszus, J. Boxerman, D. Barboriak, B. J. Erickson, M. Smits, S. J. Nelson, E. Gerstner, and D. Development, “Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials,” Neuro. Oncol. 17, 11881198 (2015).
45.J. R. Ewing, R. A. Knight, T. N. Nagaraja, J. S. Yee, V. Nagesh, P. A. Whitton, L. Li, and J. D. Fenstermacher, “Patlak plots of Gd-DTPA MRI data yield blood-brain transfer constants concordant with those of 14C-sucrose in areas of blood-brain opening,” Magn. Reson. Med. 50, 283292 (2003).
46.S. P. Sourbron and D. L. Buckley, “Classic models for dynamic contrast-enhanced MRI,” NMR Biomed. 26(8), 10041027 (2013).
47.G. J. M. Parker, C. Roberts, A. Macdonald, G. A. Buonaccorsi, S. Cheung, D. L. Buckley, A. Jackson, Y. Watson, and G. C. Jayson, “Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI,” Magn. Reson. Med. 56(5), 9931000 (2006).
48.T. J. Yun, C. K. Park, T. M. Kim, S. H. Lee, J. H. Kim, C. H. Sohn, S. H. Park, I. H. Kim, and S. H. Choi, “Glioblastoma treated with concurrent radiation therapy and temozolomide chemotherapy: Differentiation of true progression from pseudoprogression with quantitative dynamic contrast-enhanced MR imaging,” Radiology 274(3), 830840 (2015).
49.P. Kickingereder, B. Wiestler, M. Graf, S. Heiland, H. P. Schlemmer, W. Wick, A. Wick, M. Bendszus, and A. Radbruch, “Evaluation of dynamic contrast-enhanced MRI derived microvascular permeability in recurrent glioblastoma treated with bevacizumab,” J. Neuro-Oncol. 121(2), 373380 (2015).
50.D. Bonekamp, K. Deike, B. Wiestler, W. Wick, M. Bendszus, A. Radbruch, and S. Heiland, “Association of overall survival in patients with newly diagnosed glioblastoma with contrast-enhanced perfusion MRI: Comparison of intraindividually matched T1-and T2* -based bolus techniques,” J. Magn. Reson. Imaging 42, 8796 (2014).
51.S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Process. 9(9), 15321546 (2000).
52.M. Elad and M. Aharon, “Image denoising via sparse and redundant representations over learned dictionaries,” IEEE Trans. Image Process. 15(12), 37363745 (2006).
53.S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill, and T. Q. Nguyen, “An augmented Lagrangian method for total variation video restoration,” IEEE Trans. Image Process. 20(11), 30973111 (2011).
54.T. Zhang, J. M. Pauly, S. S. Vasanawala, and M. Lustig, “Coil compression for accelerated imaging with Cartesian sampling,” Magn. Reson. Med. 69(2), 571582 (2013).
55.J. Gai, N. Obeid, J. L. Holtrop, X.-L. Wu, F. Lam, M. Fu, J. P. Haldar, W.-M. W. Hwu, and B. P. Sutton, “More IMPATIENT: A gridding-accelerated Toeplitz-based strategy for non-Cartesian high-resolution 3D MRI on GPUs,” J. Parallel Distrib. Comput. 73(5), 686697 (2013).
56.J. Frahm, S. Schätz, M. Untenberger, S. Zhang, D. Voit, K. D. Merboldt, J. M. Sohns, J. Lotz, and M. Uecker, “On the temporal fidelity of nonlinear inverse reconstructions for real- time MRI—The motion challenge,” Open Med. Imaging J. 8, 17 (2014).
57.T. Wech, D. Stab, J. C. Budich, A. Fischer, J. Tran-Gia, D. Hahn, and H. Kostler, “Resolution evaluation of MR images reconstructed by iterative thresholding algorithms for compressed sensing,” Med. Phys. 39(7), 43284338 (2012).
58.Y. Zhu, Y. Guo, S. G. Lingala, S. Barnes, R. M. Lebel, M. Law, and K. S. Nayak, “Evaluation of DCE-MRI data sampling, reconstruction and model fitting using digital brain phantom,” in ISMRM (Proc. ISMRM, 2015), Vol. 23, p. 3070.
59.R. J. Bosca and E. F. Jackson, “An extensible methodology for creating realistic anthropomorphic digital phantoms for quantitative imaging algorithm comparisons and validation,” in ISMRM (Proc. ISMRM, 2015), Vol. 23, p. 797.
60.S. P. Sourbron and D. L. Buckley, “On the scope and interpretation of the Tofts models for DCE-MRI,” Magn. Reson. Med. 66(3), 735745 (2011).

Data & Media loading...


Article metrics loading...



To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints.

Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 braintumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm3, FOV 22 × 22 × 4.2 cm3, and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm3, and broader coverage 22 × 22 × 19 cm3. Temporal resolution was 5 s for both protocols. Time-resolvedimages and blood–brain barrier permeability maps were qualitatively evaluated by two radiologists.

The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans.

The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd