Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.E. Amaro and G. J. Barker, “Study design in fMRI: Basic principles,” Brain Cognit. 60, 220232 (2006).
2.M. De, S. S. Chou, H. M. Joshi, and V. P. Dravid, “Hybrid magnetic nanostructures (MNS) for magnetic resonance imaging applications,” Adv. Drug Delivery Rev. 63, 12821299 (2011).
3.J. Le Bihan, J. F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, and H. Chabriat, “Diffusion tensor imaging: Concepts and applications,” J. Magn. Reson. Imaging 13, 534546 (2001).
4.D. P. Soares and M. Law, “Magnetic resonance spectroscopy of the brain: Review of metabolites and clinical applications,” Clin. Radiol. 64, 1221 (2009).
5.N. F. Schwenzer, L. Stegger, S. Bisdas, C. Schraml, A. Kolb, A. Boss, M. Müller, M. Reimold, U. Ernemann, C. D. Claussen, C. Pfannenberg, and H. Schmidt, “Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients—Current state of image quality,” Eur. J. Radiol. 81, 34723478 (2012).
6.S. G. Nekolla and A. Martinez-Moeller, “PET and MRI in cardiac imaging: From validation studies to integrated applications,” Eur. J. Nucl. Med. Mol. Imaging 36(Suppl. 1), S121S130 (2009).
7.A. Kjær, A. Loft, I. Law, A. K. Berthelsen, L. Borgwardt, J. Löfgren, C. B. Johnbeck, A. E. Hansen, S. Keller, S. Holm, and L. Højgaard, “PET/MRI in cancer patients: First experiences and vision from Copenhagen,” Magn. Reson. Mater. Phys., Biol. Med. 26, 3747 (2013).
8.G. Delso and S. Ziegler, “PET/MRI system design,” Eur. J. Nucl. Med. Mol. Imaging 36(Suppl. 1), S86S92 (2009).
9.S. Yamamoto, H. Watabe, Y. Kanai, M. Aoki, E. Sugiyama, T. Watabe, M. Imaizumi, E. Shimosegawa, and J. Hatazawa, “Interference between PET and MRI sub-systems in a silicon-photomultiplier-based PET/MRI system,” Phys. Med. Biol. 56, 41474159 (2011).
10.M. S. Judenhofer and S. R. Cherry, “Applications for preclinical PET/MRI,” Semin. Nucl. Med. 43, 1929 (2013).
11.H. Zaidi, N. Ojha, M. Morich, J. Griesmer, Z. Hu, P. Maniawski, O. Ratib, D. Izquierdo-Garcia, Z. A. Fayad, and L. Shao, “Design and performance evaluation of a whole-body ingenuity TF PET–MRI system,” Phys. Med. Biol. 56, 30913106 (2011).
12.P. Veit-Haibach, F. P. Kuhn, F. Wiesinger, G. Delso, and G. von Schulthess, “PET–MR imaging using a tri-modality PET/CT–MR system with a dedicated shuttle in clinical routine,” Magn. Reson. Mater. Phys., Biol. Med. 26, 2535 (2013).
13.G. Delso, S. Fürst, B. Jakoby, R. Ladebeck, C. Ganter, S. G. Nekolla, M. Schwaiger, and S. I. Ziegler, “Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner,” J. Nucl. Med. 52, 19141922 (2011).
14.C. S. Levin, S. H. Maramraju, M. M. Khalighi, T. W. Deller, G. Delso, and F. Jansen, “Design features and mutual compatibility studies of the time-of-flight PET capable GE SIGNA PET/MR System,” IEEE. Trans. Med. Imag.(published online2016).
15.D. P. McElroy, V. Saveliev, A. Reznik, and J. A. Rowlands, “Evaluation of silicon photomultipliers: A promising new detector for MR compatible PET,” Nucl. Instrum. Methods Phys. Res., Sect. A 571, 106109 (2007).
16.C. S. Levin, F. Jansen, T. Deller, S. H. Maramraju, A. Grant, and A. Iagaru, “Performance of a high sensitivity time-of-flight PET ring operating simultaneously within a 3T MR system,” EJNMMI Phys. 1(Suppl. 1), A72 (2014).
17.M. Conti, “Focus on time-of-flight PET: The benefits of improved time resolution,” Eur. J. Nucl. Med. Mol. Imaging 38, 11471157 (2011).
18.S. Surti, “Update on time-of-flight PET imaging,” J. Nucl. Med. 56, 98105 (2015).
19.M. Conti, “Why is TOF PET reconstruction a more robust method in the presence of inconsistent data?,” Phys. Med. Biol. 56, 155168 (2011).
20.A. Mehranian and H. Zaidi, “Impact of time-of-flight PET on quantification errors in MR imaging–based attenuation correction,” J. Nucl. Med. 56, 635641 (2015).
21.R. Minamimoto, C. Levin, M. Jamali, D. Holley, A. Barkhodari, G. Zaharchuk, and A. Iagaru, “Improvements in PET image quality in time of flight (TOF) simultaneous PET/MRI,” Mol. Imaging Bio (published online 2016).
22.C. Kim, W. T. Peterson, T. Kidane, S. H. Maramraju, and C. S. Levin, “Compensation for thermally-induced loads on PET detectors from MR stimulus in simultaneous PET/MR imaging,” in ISMRM-ESMRMB (2014).
23.National Electrical Manufacturers Association (NEMA), Standards Publication NU 2-2012, Performance Measurements of Positron Emission Tomographs (NEMA, Rosslyn, VA, 2012).
24.S. Ross, T. Deller, C. Stearns, S. M. Hamblen, A. Ganin, and B. Kemp, Analysis of the SharpIR Reconstruction Algorithm on the Discovery(TM) PET/CT 690, WMIC 0344B (2010).
25.A. M. Alessio, C. W. Stearns, S. Tong, S. G. Ross, S. Kohlmyer, A. Ganin, and P. E. Kinahan, “Application and evaluation of a measured spatially variant system model for PET image reconstruction,” IEEE. Trans. Med. Imaging 29, 938949 (2010).
26.C. W. Stearns and A. H. R. Lonn, “Randoms from singles estimation for long PET scans,” in IEEE NSS/MIC Conference Record, Valencia, Spain (IEEE, 2011), pp. 37393741.
27.National Electrical Manufacturers Association (NEMA), Standards Publication NU 2–2007, Performance Measurements of Positron Emission Tomographs (NEMA, Rosslyn, VA, 2007).
28.M. Iatrou, R. M. Manjeshwar, S. G. Ross, C. W. Stearns, and K. Thielemans, “3D implementation of scatter estimation in 3D PET,” in IEEE NSS Conference Record, San Diego, CA (IEEE, 2006), pp. 21422145.
29.S. Ziegler, H. Braun, P. Ritt, C. Hocke, T. Kuwert, and H. H. Quick, “Systematic evaluation of phantom fluids for simultaneous PET/MR hybrid imaging,” J. Nucl. Med. 54, 14641471 (2013).
30.R. Boellaard, I. Rausch, T. Beyer, G. Delso, M. Yaqub, H. H. Quick, and B. Sattler, “Quality control for quantitative multicenter whole-body PET/MR studies: A NEMA image quality phantom study with three current PET/MR systems,” Med. Phys. 42, 59615969 (2015).
31.T. W. Deller, M. L. Spohn, and S. Ambwani, “System and method for attenuation correction of phantom images,” U.S. Patent Application No. 14/039,059 (2013).
32.S. D. Wollenweber, S. Ambwani, G. Delso, A. H. R. Lonn, R. Mullick, F. Wiesinger, Z. Piti, A. Tari, G. Novak, and M. Fidrich, “Evaluation of an atlas-based PET head attenuation correction using PET/CT & MR patient data,” IEEE Trans. Nucl. Sci. 60, 33833390 (2013).
33.S. D. Wollenweber, S. Ambwani, A. H. R. Lonn, D. D. Shanbhag, S. Thiruvenkadam, S. Kaushik, R. Mullick, H. Qian, G. Delso, and F. Wiesinger, “Comparison of 4-class and continuous fat/water methods for whole-body, MR-based PET attenuation correction,” IEEE Trans. Nucl. Sci. 60, 33913398 (2013).
34.S. D. Wollenweber, G. Delso, T. Deller, D. Goldhaber, M. Hüllner, and P. Veit-Haibach, “Characterization of the impact to PET quantification and image quality of an anterior array surface coil for PET/MR imaging,” MAGMA 27, 149159 (2014).
35.R. S. Miyaoka, T. K. Lewellen, H. Yu, and D. L. McDaniel, “Design of a depth of interaction (DOI) PET detector module,” IEEE Trans. Nucl. Sci. 45, 10691073 (1998).
36.S. Surti, A. Kuhn, M. E. Werner, A. E. Perkins, J. Kolthammer, and J. S. Karp, “Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities,” J. Nucl. Med. 48, 471480 (2007).
37.E. De Ponti, S. Morzenti, L. Guerra, C. Pasquali, M. Arosio, V. Bettinardi, A. Crespi, M. C. Gilardi, and C. Messa, “Performance measurements for the PET/CT Discovery-600 using NEMA NU 2-2007 standards,” Med. Phys. 38, 968974 (2011).
38.V. Bettinardi, L. Presotto, E. Rapisarda, M. Picchio, L. Gianolli, and M. C. Gilardi, “Physical performance of the new hybrid PET/CT Discovery-690,” Med. Phys. 38, 53945411 (2011).
39.I. Rausch, J. Cal-González, D. Dapra, H. J. Gallowitsch, P. Lind, T. Beyer, and G. Minear, “Performance evaluation of the Biograph mCT Flow PET/CT system according to the NEMA NU2-2012 standard,” EJNMMI Phys. 2(26), 117 (2015).
40.A. A. Wagadarikar, A. Ivan, S. Dolinsky, and D. L. McDaniel, “Sensitivity improvement of time-of-flight (ToF) PET detector through recovery of Compton scattered annihilation photons,” IEEE Trans. Nucl. Sci. 61, 121125 (2014).
41.M. D. Walker, M. C. Asselin, P. J. Julyan, M. Feldmann, P. S. Talbot, T. Jones, and J. C. Matthews, “Bias in iterative reconstruction of low-statistics PET data: Benefits of a resolution model,” Phys. Med. Biol. 56, 931949 (2011).
42.K. Thielemans, E. Asma, S. Ahn, R. M. Manjeshwar, T. Deller, S. G. Ross, C. W. Stearns, and A. Ganin, “Impact of PSF modelling on the convergence rate and edge behaviour of EM images in PET,” in IEEE NSS/MIC Conference Record, Knoxville, TN (IEEE, 2010), pp. 32673272.
43.A. Rahmim, J. Qi, and V. Sossi, “Resolution modeling in PET imaging: Theory, practice, benefits, and pitfalls,” Med. Phys. 40, 064301 (15pp.) (2013).

Data & Media loading...


Article metrics loading...



The GE SIGNA PET/MR is a new whole body integrated time-of-flight (ToF)-PET/MR scanner from GE Healthcare. The system is capable of simultaneous PET and MR image acquisition with sub-400 ps coincidence time resolution. Simultaneous PET/MR holds great potential as a method of interrogating molecular, functional, and anatomical parameters in clinical disease in one study. Despite the complementary imaging capabilities of PET and MRI, their respective hardware tends to be incompatible due to mutual interference. In this work, the GE SIGNA PET/MR is evaluated in terms of PET performance and the potential effects of interference from MRI operation.

The NEMA NU 2-2012 protocol was followed to measure PET performance parameters including spatial resolution, noise equivalent count rate, sensitivity, accuracy, and image quality. Each of these tests was performed both with the MR subsystem idle and with continuous MR pulsing for the duration of the PET data acquisition. Most measurements were repeated at three separate test sites where the system is installed.

The scanner has achieved an average of 4.4, 4.1, and 5.3 mm full width at half maximum radial, tangential, and axial spatial resolutions, respectively, at 1 cm from the transaxial FOV center. The peak noise equivalent count rate (NECR) of 218 kcps and a scatter fraction of 43.6% are reached at an activity concentration of 17.8 kBq/ml. Sensitivity at the center position is 23.3 cps/kBq. The maximum relative slice count rate error below peak NECR was 3.3%, and the residual error from attenuation and scatter corrections was 3.6%. Continuous MR pulsing had either no effect or a minor effect on each measurement.

Performance measurements of the ToF-PET whole body GE SIGNA PET/MR system indicate that it is a promising new simultaneous imaging platform.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd