Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.O. O. Betti and Y. E. Derechinsky, “Irradiations stereotaxiques multifaisceaux,” Neurochirurgie 28, 5556 (1982).
2.W. Lutz, K. R. Winston, and N. Maleki, “A system for stereotactic radiosurgery with a linear accelerator,” Int. J. Radiat. Oncol., Biol., Phys. 14, 373381 (1988).
3.K. R. Winston and W. Lutz, “Linear accelerator as a neurosurgical tool for stereotactic radiosurgery,” Neurosurgery 22, 454464 (1988).
4.I. J. Das, M. B. Downes, B. W. Corn, W. J. Curran, M. Werner-Wasik, and D. W. Andrews, “Characteristics of a dedicated linear accelerator-based stereotactic radiosurgery-radiotherapy unit,” Radiother. Oncol. 38, 6168 (1996).
5.F. Colombo, A. Benedetti, F. Pozza, R. C. Avanzo, C. Marchetti, G. Chierego, and A. Zanardo, “External stereotactic irradiation by linear accelerator,” Neurosurgery 16, 154160 (1985).
6.L. V. Laitinen, B. Liliequist, M. Fagerlund, and A. T. Eriksson, “An adapter for computed tomography-guided stereotaxis,” Surg. Neurol. 23, 559566 (1985).
7.M. J. Engler, B. H. Curran, J. S. Tsai, E. S. Sternick, W. D. Selles, D. E. Wazer, W. P. Mason, T. Sailor, and T. R. Mackie, “Fine tuning of linear accelerator accessories for stereotactic radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 28, 10011008 (1994).
8.J. Rahimian, J. C. Chen, A. A. Rao, M. R. Girvigian, M. J. Miller, and H. E. Greathouse, “Geometrical accuracy of the Novalis stereotactic radiosurgery system for trigeminal neuralgia,” J Neurosurg 101(Suppl 3), 351355 (2004).
9.J. E. Bayouth, H. S. Kaiser, M. C. Smith, E. C. Pennington, K. M. Anderson, T. C. Ryken, and J. M. Buatti, “Image-guided stereotactic radiosurgery using a specially designed high-dose-rate Linac,” Med. Dosim. 32, 134141 (2007).
10.A. Clivio, E. Vanetti, S. Rose, G. Nicolini, M. F. Belosi, L. Cozzi, C. Baltes, and A. Fogliata, “Evaluation of the machine performance check application for TrueBeam Linac,” Radiat. Oncol. 10, 111 (2015).
11.G. H. Hartmann, B. Bauer-Kirpes, C. F. Serago, and W. J. Lorenz, “Precision and accuracy of stereotactic convergent beam irradiations from a linear accelerator,” Int. J. Radiat. Oncol., Biol., Phys. 28, 481492 (1994).
12.D. Yeung, J. Palta, J. Fontanesi, and L. Kun, “Systematic analysis of errors in target localization and treatment delivery in stereotactic radiosurgery (SRS),” Int. J. Radiat. Oncol., Biol., Phys. 28, 493498 (1994).
13.J. Grimm, S. Y. Grimm, I. J. Das, Y. Zhu, I. Yeo, J. Xue, L. Simpson, D. Jacob, and A. Sarkar, “A quality assurance method with submillimeter accuracy for stereotactic linear accelerators,” J. Appl. Clin. Med. Phys. 12, 182198 (2011).
14.S. L. Meeks, J. M. Buatti, L. G. Bouchet, F. J. Bova, T. C. Ryken, E. C. Pennington, K. M. Anderson, and W. A. Friedman, “Ultrasound-guided extracranial radiosurgery: Technique and application,” Int. J. Radiat. Oncol., Biol., Phys. 55, 10921101 (2003).
15.F. J. Bova, J. M. Buatti, W. A. Friedman, W. M. Mendenhall, C. C. Yang, and C. Liu, “The University of Florida frameless high-precision stereotactic radiotherapy system,” Int. J. Radiat. Oncol., Biol., Phys. 38, 875882 (1997).
16.J. J. Lagendijk, B. W. Raaymakers, A. J. Raaijmakers, J. Overweg, K. J. Brown, E. M. Kerkhof, R. W. van der Put, B. Hardemark, M. van Vulpen, and U. A. van der Heide, “MRI/ Linac integration,” Radiother. Oncol. 86, 2529 (2008).
17.N. Wen, H. Li, K. Song, K. Chin-Snyder, Y. Qin, J. Kim, M. Bellon, M. Gulam, S. Gardner, A. Doemer, S. Devpura, J. Gordon, I. Chetty, F. Siddiqui, M. Ajlouni, R. Pompa, Z. Hammoud, M. Simoff, S. Kalkanis, B. Movsas, and M. S. Siddiqui, “Characteristics of a novel treatment system for linear accelerator-based stereotactic radiosurgery,” J. Appl. Clin. Med. Phys. 16, 125548 (2015).
18.J. M. Balter, J. N. Wright, L. J. Newell, B. Friemel, S. Dimmer, Y. Cheng, J. Wong, E. Vertatschitsch, and T. P. Mate, “Accuracy of a wireless localization system for radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 61, 933937 (2005).
19.D. Schmidhalter, M. K. Fix, M. Wyss, N. Schaer, P. Munro, S. Scheib, P. Kunz, and P. Manser, “Evaluation of a new six degrees of freedom couch for radiation therapy,” Med Phys 40, 111710 (11pp.) (2013).
20.P. Skworcow, J. A. Mills, O. C. Haas, and K. J. Burnham, “A new approach to quantify the mechanical and radiation isocentres of radiotherapy treatment machine gantries,” Phys. Med. Biol. 52, 71097124 (2007).
21.H. Treuer, M. Hoevels, K. Luyken, A. Gierich, M. Kocher, R. P. Muller, and V. Sturm, “On isocentre adjustment and quality control in linear accelerator based radiosurgery with circular collimators and room lasers,” Phys. Med. Biol. 45, 23312342 (2000).
22.J. Chojnowski and R. Gajewski, “An automatic method of the isocentre position verification for micromultileaf collimator based radiosurgery system,” Australas. Phys. Eng. Sci. Med. 34, 1521 (2011).
23.C. Glide-Hurst, M. Bellon, R. Foster, C. Altunbas, M. Speiser, M. Altman, D. Westerly, N. Wen, B. Zhao, M. Miften, I. J. Chetty, and T. Solberg, “Commissioning of the varian TrueBeam linear accelerator: A multi-institutional study,” Med. Phys. 40, 031719 (15pp.) (2013).
24.S. Gao, W. Du, P. Balter, P. Munro, and A. Jeung, “Evaluation of IsoCal geometric calibration system for Varian Linacs equipped with on-board imager and electronic portal imaging device imaging systems,” J. Appl. Clin. Med. Phys. 15, 164181 (2014).
25.S. J. Gardner, M. Gulam, K. Song, H. Li, Y. Huang, B. Zhao, Y. Qin, K. Snyder, J. Kim, J. Gordon, I. J. Chetty, and N. Wen, “Generation and verification of QFix kVue Calypso-compatible couch top model for a dedicated stereotactic linear accelerator with FFF beams,” J. Appl. Clin. Med. Phys. 16, 163180 (2015).
26.N. W. S. Lu, J. Kim, Y. Qin, Y. Huang, B. Zhao, and I. J. Chetty, “Absolute film dosimetry for stereotactic radiosurgery and stereotactic body radiotherapy quality assurance using Gafchromic EBT3 films,” in AAPM Spring Clinical Meeting (2016).
27.D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, “A technique for the quantitative evaluation of dose distributions,” Med. Phys. 25, 656661 (1998).
28.J. Kim, J. Y. Jin, N. Walls, T. Nurushev, B. Movsas, I. J. Chetty, and S. Ryu, “Image-guided localization accuracy of stereoscopic planar and volumetric imaging methods for stereotactic radiation surgery and stereotactic body radiation therapy: A phantom study,” Int. J. Radiat. Oncol., Biol., Phys. 79, 15881596 (2011).
29.S. D. Chang, W. Main, D. P. Martin, I. C. Gibbs, and M. P. Heilbrun, “An analysis of the accuracy of the CyberKnife: A robotic frameless stereotactic radiosurgical system,” Neurosurgery 52, 140146 (2003), discussion 146–147.
30.M. J. Murphy and R. S. Cox, “The accuracy of dose localization for an image-guided frameless radiosurgery system,” Med. Phys. 23, 20432049 (1996).
31.M. J. Murphy, “Fiducial-based targeting accuracy for external-beam radiotherapy,” Med. Phys. 29, 334344 (2002).
32.C. Yu, W. Main, D. Taylor, G. Kuduvalli, M. L. Apuzzo, and J. R. Adler, Jr., “An anthropomorphic phantom study of the accuracy of Cyberknife spinal radiosurgery,” Neurosurgery 55, 11381149 (2004).
33.S. Dieterich, C. Cavedon, C. F. Chuang, A. B. Cohen, J. A. Garrett, C. L. Lee, J. R. Lowenstein, M. F. d’Souza, D. D. Taylor, Jr., X. Wu, and C. Yu, “Report of AAPM TG 135: Quality assurance for robotic radiosurgery,” Med. Phys. 38, 29142936 (2011).
34.G. Subedi, T. Karasick, J. Grimm, S. Jain, J. Xue, Q. Xu, Y. Chen, S. Asbell, N. Pahlajani, and T. LaCouture, “Factors that may determine the targeting accuracy of image-guided radiosurgery,” Med. Phys. 42, 60046010 (2015).
35.C. Antypas and E. Pantelis, “Performance evaluation of a CyberKnife G4 image-guided robotic stereotactic radiosurgery system,” Phys. Med. Biol. 53, 46974718 (2008).
36.M. J. Murphy, “The importance of computed tomography slice thickness in radiographic patient positioning for radiosurgery,” Med. Phys. 26, 171175 (1999).
37.W. F. Verbakel, F. J. Lagerwaard, A. J. Verduin, S. Heukelom, B. J. Slotman, and J. P. Cuijpers, “The accuracy of frameless stereotactic intracranial radiosurgery,” Radiother. Oncol. 97, 390394 (2010).
38.Y. Huang, K. Chin, J. R. Robbins, J. Kim, H. Li, H. Amro, I. J. Chetty, J. Gordon, and S. Ryu, “Radiosurgery of multiple brain metastases with single-isocenter dynamic conformal arcs (SIDCA),” Radiother. Oncol. 112, 128132 (2014).
39.G. M. Clark, R. A. Popple, P. E. Young, and J. B. Fiveash, “Feasibility of single-isocenter volumetric modulated arc radiosurgery for treatment of multiple brain metastases,” Int. J. Radiat. Oncol., Biol., Phys. 76, 296302 (2010).
40.N. Ramakrishna, F. Rosca, S. Friesen, E. Tezcanli, P. Zygmanszki, and F. Hacker, “A clinical comparison of patient setup and intra-fraction motion using frame-based radiosurgery versus a frameless image-guided radiosurgery system for intracranial lesions,” Radiother. Oncol. 95, 109115 (2010).
41.N. Wen, N. Walls, J. Kim, J. Y. Jin, S. Kim, T. Nurushev, I. J. Chetty, B. Movsas, and S. Ryu, “Clinical use of dual image-guided localization system for spine radiosurgery,” Technol. Cancer Res. Treat. 11, 123131 (2012).
42.C. Bert, K. G. Metheany, K. Doppke, and G. T. Chen, “A phantom evaluation of a stereo-vision surface imaging system for radiotherapy patient setup,” Med. Phys. 32, 27532762 (2005).
43.L. I. Cervino, T. Pawlicki, J. D. Lawson, and S. B. Jiang, “Frame-less and mask-less cranial stereotactic radiosurgery: A feasibility study,” Phys. Med. Biol. 55, 18631873 (2010).
44.L. Santanam, C. Noel, T. R. Willoughby, J. Esthappan, S. Mutic, E. E. Klein, D. A. Low, and P. J. Parikh, “Quality assurance for clinical implementation of an electromagnetic tracking system,” Med. Phys. 36, 34773486 (2009).

Data & Media loading...


Article metrics loading...



To evaluate the total systematic accuracy of a frameless, image guided stereotactic radiosurgery system.

The localization accuracy and intermodality difference was determined by delivering radiation to an end-to-end prototype phantom, in which the targets were localized using optical surface monitoring system (OSMS), electromagnetic beacon-based tracking (Calypso®), cone-beam CT, “snap-shot” planar x-ray imaging, and a robotic couch. Six IMRT plans with jaw tracking and a flattening filter free beam were used to study the dosimetric accuracy for intracranial and spinal stereotactic radiosurgerytreatment.

End-to-end localization accuracy of the system evaluated with the end-to-end phantom was 0.5 ± 0.2 mm with a maximum deviation of 0.9 mm over 90 measurements (including jaw, MLC, and cone measurements for both auto and manual fusion) for single isocenter, single target treatment, 0.6 ± 0.4 mm for multitarget treatment with shared isocenter. Residual setup errors were within 0.1 mm for OSMS, and 0.3 mm for Calypso. Dosimetric evaluation based on absolute film dosimetry showed greater than 90% pass rate for all cases using a gamma criteria of 3%/1 mm.

The authors’ experience demonstrates that the localization accuracy of the frameless image-guided system is comparable to robotic or invasive frame based radiosurgery systems.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd