Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapm/journal/medphys/43/6/10.1118/1.4948668
1.
1.D. R. Johnson and B. P. O’Neill, “Glioblastoma survival in the United States before and during the temozolomide era,” J. Neuro-Oncol. 107, 359364 (2012).
http://dx.doi.org/10.1007/s11060-011-0749-4
2.
2.R. Stupp, W. P. Mason, M. J. van den Bent, M. Weller, B. Fisher, M. J. Taphoorn, K. Belanger, A. A. Brandes, C. Marosi, U. Bogdahn, J. Curschmann, R. C. Janzer, S. K. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, J. G. Cairncross, E. Eisenhauer, R. O. Mirimanoff, and European Organisation for Research and Treatment of Cancer, Brain Tumor, and Radiotherapy Groups, and National Cancer Institute of Canada Clinical Trials Group, “Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma,” N. Engl. J. Med. 352, 987996 (2005).
http://dx.doi.org/10.1056/NEJMoa043330
3.
3.B. M. Ellingson, P. Y. Wen, M. J. van den Bent, and T. F. Cloughesy, “Pros and cons of current brain tumor imaging,” Neuro Oncol. 16(Suppl. 7), vii2vii11 (2014).
http://dx.doi.org/10.1093/neuonc/nou224
4.
4.A. L. Rivera, C. E. Pelloski, M. R. Gilbert, H. Colman, C. De La Cruz, E. P. Sulman, B. N. Bekele, and K. D. Aldape, “MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma,” Neuro Oncol. 12, 116121 (2010).
http://dx.doi.org/10.1093/neuonc/nop020
5.
5.K. Zhang, X. Q. Wang, B. Zhou, and L. Zhang, “The prognostic value of MGMT promoter methylation in glioblastoma multiforme: A meta-analysis,” Fam. Cancer 12, 449458 (2013).
http://dx.doi.org/10.1007/s10689-013-9607-1
6.
6.B. M. Ellingson, “Radiogenomics and imaging phenotypes in glioblastoma: Novel observations and correlation with molecular characteristics,” Curr. Neurol. Neurosci. Rep. 15, 506518 (2015).
http://dx.doi.org/10.1007/s11910-014-0506-0
7.
7.D. Rundle-Thiele, B. Day, B. Stringer, M. Fay, J. Martin, R. L. Jeffree, P. Thomas, C. Bell, O. Salvado, Y. Gal, A. Coulthard, S. Crozier, and S. Rose, “Using the apparent diffusion coefficient to identifying MGMT promoter methylation status early in glioblastoma: Importance of analytical method,” J. Med. Radiat. Sci. 62, 9298 (2015).
http://dx.doi.org/10.1002/jmrs.103
8.
8.S. Drabycz, G. Roldan, P. de Robles, D. Adler, J. B. McIntyre, A. M. Magliocco, J. G. Cairncross, and J. R. Mitchell, “An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging,” Neuroimage 49, 13981405 (2010).
http://dx.doi.org/10.1016/j.neuroimage.2009.09.049
9.
9.I. Levner, S. Drabycz, G. Roldan, P. De Robles, J. G. Cairncross, and R. Mitchell, “Predicting MGMT methylation status of glioblastomas from MRI texture,” Med. Image Comput. Comput. Assist. Interv. 12, 522530 (2009).
http://dx.doi.org/10.1007/978-3-642-04271-3_64
10.
10.W. J. Moon, J. W. Choi, H. G. Roh, S. D. Lim, and Y. C. Koh, “Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: The CT, diffusion tensor imaging, and perfusion MR imaging,” Neuroradiology 54, 555563 (2012).
http://dx.doi.org/10.1007/s00234-011-0947-y
11.
11.S. S. Ahn, N. Y. Shin, J. H. Chang, S. H. Kim, E. H. Kim, D. W. Kim, and S. K. Lee, “Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging,” J. Neurosurg. 121, 367373 (2014).
http://dx.doi.org/10.3171/2014.5.JNS132279
12.
12.A. Gupta, A. M. Omuro, A. D. Shah, J. J. Graber, W. Shi, Z. Zhang, and R. J. Young, “Continuing the search for MR imaging biomarkers for MGMT promoter methylation status: Conventional and perfusion MRI revisited,” Neuroradiology 54, 641643 (2012).
http://dx.doi.org/10.1007/s00234-011-0970-z
13.
13.P. D. Korfiatis, T. L. Kline, D. J. Blezek, S. G. Langer, W. J. Ryan, and B. J. Erickson, “MIRMAID: A content management system for medical image analysis research,” Radiographics 35, 14611468 (2015).
http://dx.doi.org/10.1148/rg.2015140031
14.
14.P. A. Yushkevich, J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee, and G. Gerig, “User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability,” Neuroimage 31, 11161128 (2006).
http://dx.doi.org/10.1016/j.neuroimage.2006.01.015
15.
15.V. Fonov, A. C. Evans, K. Botteron, C. R. Almli, R. C. McKinstry, and D. L. Collins, “Unbiased average age-appropriate atlases for pediatric studies,” Neuroimage 54, 313327 (2011).
http://dx.doi.org/10.1016/j.neuroimage.2010.07.033
16.
16.B. B. Avants, N. J. Tustison, G. Song, P. A. Cook, A. Klein, and J. C. Gee, “A reproducible evaluation of ANTs similarity metric performance in brain image registration,” Neuroimage 54, 20332044 (2011).
http://dx.doi.org/10.1016/j.neuroimage.2010.09.025
17.
17.M. M. Galloway, “Texture analysis using gray level run lengths,” Comput. Graphics Image Process. 4, 172179 (1975).
http://dx.doi.org/10.1016/S0146-664X(75)80008-6
18.
18.T. S. Yoo, M. J. Ackerman, W. E. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxas, and R. Whitaker, “Engineering and Algorithm Design for an Image Processing API: A Technical Report on ITK - The Insight Toolkit,” in Proc. of Medicine Meets Virtual Reality, edited byJ. Westwood (IOS Press Amsterdam, 2002), pp. 586592.
19.
19.N. Tustison and J. Gee, “Run-Length Matrices For Texture Analysis,” Insight J. 1, 16 (2008).
20.
20.R. M. Haralick, K. Shanmugam, and I. H. Dinstein, “Textural features for image classification,” IEEE Trans. Syst., Man, Cybern. 3, 610621 (1973).
http://dx.doi.org/10.1109/tsmc.1973.4309314
21.
21.T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. (Springer, New York, NY, 2009).
22.
22.C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn. 20, 273297 (1995).
http://dx.doi.org/10.1007/bf00994018
23.
23.L. Breiman, “Random forests,” Mach. Learn. 45, 532 (2001).
http://dx.doi.org/10.1023/A:1010933404324
24.
24.A. P. Bradley, “The use of the area under the ROC curve in the evaluation of machine learning algorithms,” Pattern Recognit. 30, 11451159 (1997).
http://dx.doi.org/10.1016/S0031-3203(96)00142-2
25.
25.X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J. C. Sanchez, and M. Muller, “pROC: An open-source package for R and S plus to analyze and compare ROC curves,” BMC Bioinf. 12, 7785 (2011).
http://dx.doi.org/10.1186/1471-2105-12-77
26.
26.E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, “Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach,” Biometrics 44, 837845 (1988).
http://dx.doi.org/10.2307/2531595
27.
27.See supplementary material at http://dx.doi.org/10.1118/1.4948668 for imaging features that were qualitatively assessed for the two groups (MGMT methylated and unmethylated).[Supplementary Material]
28.
28.A. Kassner and R. E. Thornhill, “Texture analysis: A review of neurologic MR imaging applications,” Am. J. Neuroradiol. 31, 809816 (2010).
http://dx.doi.org/10.3174/ajnr.A2061
29.
29.A. Romano, L. F. Calabria, F. Tavanti, G. Minniti, M. C. Rossi-Espagnet, V. Coppola, S. Pugliese, D. Guida, G. Francione, C. Colonnese, L. M. Fantozzi, and A. Bozzao, “Apparent diffusion coefficient obtained by magnetic resonance imaging as a prognostic marker in glioblastomas: Correlation with MGMT promoter methylation status,” Eur. Radiol. 23, 513520 (2013).
http://dx.doi.org/10.1007/s00330-012-2601-4
30.
30.J. E. Eckel-Passow, D. H. Lachance, A. M. Molinaro, K. M. Walsh, P. A. Decker, H. Sicotte, M. Pekmezci, T. Rice, M. L. Kosel, I. V. Smirnov, G. Sarkar, A. A. Caron, T. M. Kollmeyer, C. E. Praska, A. R. Chada, C. Halder, H. M. Hansen, L. S. McCoy, P. M. Bracci, R. Marshall, S. Zheng, G. F. Reis, A. R. Pico, B. P. O’Neill, J. C. Buckner, C. Giannini, J. T. Huse, A. Perry, T. Tihan, M. S. Berger, S. M. Chang, M. D. Prados, J. Wiemels, J. K. Wiencke, M. R. Wrensch, and R. B. Jenkins, “Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors,” N. Engl. J. Med. 372, 24992508 (2015).
http://dx.doi.org/10.1056/NEJMoa1407279
31.
31.A. J. Ho, X. Hua, S. Lee, A. D. Leow, I. Yanovsky, B. Gutman, I. D. Dinov, N. Lepore, J. L. Stein, A. W. Toga, C. R. Jack, Jr., M. A. Bernstein, E. M. Reiman, D. J. Harvey, J. Kornak, N. Schuff, G. E. Alexander, M. W. Weiner, P. M. Thompson, and Alzheimer’s Disease Neuroimaging Initiative, “Comparing 3 T and 1.5 T MRI for tracking Alzheimer’s disease progression with tensor-based morphometry,” Hum. Brain Mapp. 31, 499514 (2010).
http://dx.doi.org/10.1002/hbm.20882
32.
32.M. E. Mayerhoefer, P. Szomolanyi, D. Jirak, A. Materka, and S. Trattnig, “Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: An application-oriented study,” Med. Phys. 36, 12361243 (2009).
http://dx.doi.org/10.1118/1.3081408
http://aip.metastore.ingenta.com/content/aapm/journal/medphys/43/6/10.1118/1.4948668
Loading
/content/aapm/journal/medphys/43/6/10.1118/1.4948668
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapm/journal/medphys/43/6/10.1118/1.4948668
2016-05-13
2016-09-26

Abstract

Imaging biomarker research focuses on discovering relationships between radiological features and histological findings. In glioblastoma patients, methylation of the O6-methylguanine methyltransferase (MGMT) gene promoter is positively correlated with an increased effectiveness of current standard of care. In this paper, the authors investigate texture features as potential imaging biomarkers for capturing the MGMT methylation status of glioblastoma multiforme (GBM) tumors when combined with supervised classification schemes.

A retrospective study of 155 GBM patients with known MGMT methylation status was conducted. Co-occurrence and run length texture features were calculated, and both support vector machines (SVMs) and random forest classifiers were used to predict MGMT methylation status.

The best classification system (an SVM-based classifier) had a maximum area under the receiver-operating characteristic (ROC) curve of 0.85 (95% CI: 0.78–0.91) using four texture features (correlation, energy, entropy, and local intensity) originating from the 2-weighted images, yielding at the optimal threshold of the ROC curve, a sensitivity of 0.803 and a specificity of 0.813.

Results show that supervised machine learning of MRI texture features can predict MGMT methylation status in preoperative GBM tumors, thus providing a new noninvasive imaging biomarker.

Loading

Full text loading...

/deliver/fulltext/aapm/journal/medphys/43/6/1.4948668.html;jsessionid=SKiuVZbphzwGSEiA70pJwjto.x-aip-live-06?itemId=/content/aapm/journal/medphys/43/6/10.1118/1.4948668&mimeType=html&fmt=ahah&containerItemId=content/aapm/journal/medphys
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=online.medphys.org/43/6/10.1118/1.4948668&pageURL=http://scitation.aip.org/content/aapm/journal/medphys/43/6/10.1118/1.4948668'
Right1,Right2,Right3,