Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
R. Mohan, “Why Monte Carlo?,” in Proceedings of XIIth International Conference on the Use of Computers in Radiation Therapy (Nuclear Energy Agency, Salt Lake City, UT, 1997), pp. 1618.
C.-M. Ma, T. Pawlicki, S. B. Jiang, J. S. Li, J. Deng, E. Mok, A. Kapur, L. Xing, L. Ma, and A. L. Boyer, “Monte Carlo verification of IMRT dose distributions from a commercial treatment planning optimization system,” Phys. Med. Biol. 45(9), 24832495 (2000).
V. Moiseenko, M. Liu, S. Loewen, R. Kosztyla, E. Vollans, J. Lucido, M. Fong, R. Vellani, and I. A. Popescu, “Monte Carlo calculation of dose distributions in oligometastatic patients planned for spine stereotactic ablative radiotherapy,” Phys. Med. Biol. 58(20), 71077116 (2013).
G. H. Bol, S. Hissoiny, J. J. W. Lagendijk, and B. W. Raaymakers, “Fast online Monte Carlo-based IMRT planning for the MRI linear accelerator,” Phys. Med. Biol. 57(5), 13751385 (2012).
L. Bogner, M. Alt, T. Dirscherl, I. Morgenstern, C. Latscha, and M. Rickhey, “Fast direct Monte Carlo optimization using the inverse kernel approach,” Phys. Med. Biol. 54(13), 40514067 (2009).
P. J. Keall, J. V. Siebers, R. Jeraj, and R. Mohan, “The effect of dose calculation uncertainty on the evaluation of radiotherapy plans,” Med. Phys. 27(3), 478484 (2000).
L. Su, Y. Yang, B. Bednarz, E. Sterpin, X. Du, T. Liu, W. Ji, and X. G. Xu, “ARCHERRT—A GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: Software development and application to helical tomotherapy,” Med. Phys. 41(7), 071709 (13pp.) (2014).
X. Jia, X. Gu, Y. J. Graves, M. Folkerts, and S. B. Jiang, “GPU-based fast Monte Carlo simulation for radiotherapy dose calculation,” Phys. Med. Biol. 56(22), 70177031 (2011).
Y. Li, Z. Tian, F. Shi, T. Song, Z. Wu, Y. Liu, S. Jiang, and X. Jia, “A new Monte Carlo-based treatment plan optimization approach for intensity modulated radiation therapy,” Phys. Med. Biol. 60(7), 29032919 (2015).
C.-M. Ma, E. Mok, A. Kapur, T. Pawlicki, D. Findley, S. Brain, K. Forster, and A. L. Boyer, “Clinical implementation of a Monte Carlo treatment planning system,” Med. Phys. 26(10), 21332143 (1999).
L. Bogner, M. Hartmann, M. Rickhey, and Z. Moravek, “Application of an inverse kernel concept to Monte Carlo based IMRT,” Med. Phys. 33(12), 47494757 (2006).
R. Lu, Simplifying the Optimization Process in Intensity-Modulated Radiotherapy (Rensselaer Polytechnic Institute, Troy, New York, 2007).
R. Li and L. Xing, “An adaptive planning strategy for station parameter optimized radiation therapy (SPORT): Segmentally boosted VMAT,” Med. Phys. 40(5), 050701 (9pp.) (2013).
J. Ma, C. Beltran, H. S. W. C. Tseung, and M. G. Herman, “A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system,” Med. Phys. 41(12), 121707 (9pp.) (2014).
R. Jeraj and P. Keall, “The effect of statistical uncertainty on inverse treatment planning based on Monte Carlo dose calculation,” Phys. Med. Biol. 45(12), 36013613 (2000).
J. Nocedal and S. Wright, Numerical Optimization (Springer Science & Business Media, LLC, New York, NY, 2006).
S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. J. G. Cadenas, I. González, G. G. Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. M. de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M. G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. D. Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. S. Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. P. Wellisch, T. Wenaus, D. C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche, “ geant4—A simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506(3), 250303 (2003).
Y. M. Yang and B. Bednarz, “Consistency evaluation between EGSnrc and geant4 charged particle transport in an equilibrium magnetic field,” Phys. Med. Biol. 58(4), N47N58 (2013).
Y. M. Yang, M. Geurts, J. B. Smilowitz, E. Sterpin, and B. P. Bednarz, “Monte Carlo simulations of patient dose perturbations in rotational-type radiotherapy due to a transverse magnetic field: A tomotherapy investigation,” Med. Phys. 42(2), 715725 (2015).
Z. Tian, F. Peng, M. Folkerts, J. Tan, X. Jia, and S. B. Jiang, “Multi-GPU implementation of a VMAT treatment plan optimization algorithm,” Med. Phys. 42(6), 28412852 (2015).
D. M. Shepard, G. H. Olivera, P. J. Reckwerdt, and T. R. Mackie, “Iterative approaches to dose optimization in tomotherapy,” Phys. Med. Biol. 45(1), 6990 (2000).
R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive variance reduction,” in Advances in Neural Information Processing Systems, edited byC. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger (Curran Associates Inc., 2013), Vol. 26, pp. 315323.
M. L. Kessler, D. L. Mcshan, M. A. Epelman, K. A. Vineberg, A. Eisbruch, T. S. Lawrence, and B. A. Fraass, “Costlets: A generalized approach to cost functions for automated optimization of IMRT treatment plans,” Optim. Eng. 6(4), 421448 (2005).
L. Bottou, “Online algorithms and stochastic approximations,” in Online Learning Neural Networks, edited by D. Saad (Cambridge University Press, Cambridge, UK, 1998).
H. Robbins and D. Siegmund, “A convergence theorem for non negative almost supermartingales and some applications,” in Herbert Robbins Sell Paper, edited by T. L. Lai and D. Siegmund (Springer, New York, NY, 1985), pp. 111135.
P. Hennig, “Fast probabilistic optimization from noisy gradients,” in Proceedings of 30th International Conference on Machine Learning ICML-13, edited byS. Dasgupta and D. Mcallester (JMLR Workshop Conference Proceedings, 2013), pp. 6270.
I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, “On the importance of initialization and momentum in deep learning,” in International Conference on Machine Learning, ICML 3 (JMLR, 2013), pp. 11391147.
D. E. Rumelhart, G. E. Hinton, R. J. Williams, and C. PDP Research Group, in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, edited byD. E. Rumelhart and J. L. McClelland (MIT Press, Cambridge, MA, 1986), Vol. 1, pp. 318362.
P. Tseng, “An incremental gradient (-projection) method with momentum term and adaptive stepsize rule,” SIAM J. Optim. 8(2), 506531 (1998).
M. Schmidt, N. Le Roux, and F. Bach, Minimizing Finite Sums with the Stochastic Average Gradient (2013).
J. Sempau and A. F. Bielajew, “Towards the elimination of Monte Carlo statistical fluctuation from dose volume histograms for radiotherapy treatment planning,” Phys. Med. Biol. 45(1), 131157 (2000).

Data & Media loading...


Article metrics loading...



The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship within a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner.

The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the concept of momentum from stochastic gradient descent were used to address obstacles unique to performing gradient descent fluence optimization during MC particle transport. The authors have applied their method to two simple geometrical phantoms, and one clinical patient geometry to examine the capability of this platform to generate conformal plans as well as assess its computational scaling and efficiency, respectively.

The authors obtain a reduction of at least 50% in total histories transported in their investigation compared to a theoretical unweighted beamlet calculation and subsequent fluence optimization method, and observe a roughly fixed optimization time overhead consisting of ∼10% of the total computation time in all cases. Finally, the authors demonstrate a negligible increase in memory overhead of ∼7–8 MB to allow for optimization of a clinical patient geometry surrounded by 36 beams using their platform.

This study demonstrates a fluence optimization approach, which could significantly improve the development of next generation radiation therapy solutions while incurring minimal additional computational overhead.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd