Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
E. Bräuer-Krisch, R. Serduc, E. A. Siegbahn, G. Le Duc, Y. Prezado, A. Bravin, H. Blattmann, and J. A. Laissue, “Effects of pulsed, spatially fractionated, microscopic synchrotron x-ray beams on normal and tumoral brain tissue,” Mutat. Res. 704(1-3), 160166 (2010).
J. A. Laissue, H. Blattmann, M. Di Michiel, D. N. Slatkin, N. Lyubimova, R. Guzmand, W. Zimmermann, S. Birrer, T. Bley, P. Kircher, R. Stettler, R. Fatzer, A. Jaggy, H. M. Smilowitz, E. Bräuer, A. Bravin, G. Le Duc, C. Nemoz, M. Renier, W. Thomlinson, J. Stepanek, and H.-P. Wagner, “The weanling piglet cerebellum: A surrogate for tolerance to MRT (microbeam radiation therapy) in pediatric neuro-oncology,” Proc. SPIE 4508, 6573 (2001).
J. A. Laissue, G. Geiser, P. O. Spanne, F. A. Dilmanian, J.-O. Gebbers, M. Geiser, X.-Y. Wu, M. S. Makar, P. L. Micca, M. M. Nawrocky, D. D. Joel, and D. N. Slatkin, “Neuropathology of ablation of rat gliosarcomas and contiguous brain tissues using a microplanar beam of synchrotron-wiggler-generated x rays,” Int. J. Cancer 78(5), 654660 (1998).<654::AID-IJC21>3.0.CO;2-L
M. Miura, H. Blattmann, E. Bräuer-Krisch, A. Bravin, A. L. Hanson, M. M. Nawrocky, P. L. Micca, D. N. Slatkin, and J. A. Laissue, “Radiosurgical palliation of aggressive murine SCCVII squamous cell carcinomas using synchrotron-generated x-ray microbeams,” Br. J. Radiol. 79(937), 7175 (2006).
E. Schültke, B. H. J. Juurlink, K. Ataelmann, J. A. Laissue, H. Blattmann, E. Bräuer-Krisch, A. Bravin, J. Minczewska, J. C. Crosbie, H. Thaherian, E. Frangou, T. Wysokinsky, L. D. Chapman, R. Griebel, and D. Fourney, “Memory and survival after microbeam radiation therapy,” Eur. J. Radiol. 68(Suppl. 3), S142S146 (2008).
J. C. Crosbie, R. J. Anderson, K. Rothkamm, C. M. Restall, L. Cann, S. Ruwanpura, S. Meachem, N. Yagi, I. Svalbe, R. A. Lewis, B. R. G. Williams, and P. A. W. Rogers, “Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues,” Int. J. Radiat. Oncol. 77(3), 886894 (2010).
A. Bouchet, B. Lemasson, T. Christen, M. Potez, C. Rome, N. Coquery, C. Le Clec’h, A. Moisan, E. Bräuer-Krisch, G. Le Duc, C. Rémy, J. A. Laissue, E. L. Barbier, E. Brun, and R. Serduc, “Synchrotron microbeam radiation therapy induces hypoxia in intracerebral gliosarcoma but not in the normal brain,” Radiother. Oncol. 108(1), 143148 (2013).
F. A. Dilmanian, G. M. Morris, N. Zhong, T. Bacarian, J. F. Hainfeld, J. Kalef-Ezra, L. J. Brewington, J. Tammam, and E. M. Rosen, “Murine EMT-6 carcinoma: High therapeutic efficacy of microbeam radiation therapy,” Radiat. Res. 159(5), 632641 (2003).[0632:MECHTE]2.0.CO;2
J. A. Laissue, H. Blattmann, H. P. Wagner, M. A. Grotzer, and D. N. Slatkin, “Prospects for microbeam radiation therapy of brain tumours in children to reduce neurological sequelae,” Dev. Med. Child Neurol. 49(8), 577581 (2007).
M. J. Ibahim, J. C. Crosbie, Y. Yang, M. Zaitseva, A. W. Stevenson, P. A. W. Rogers, and P. Paiva, “An evaluation of dose equivalence between synchrotron microbeam radiation therapy and conventional broadbeam radiation using clonogenic and cell impedance assays,” PLoS One 9(6), e100547 (2014).
R. Serduc, E. Bräuer-Krisch, A. Bouchet, R. Luc, T. Brochard, A. Bravin, J. A. Laissue, and G. Le Duc, “First trial of spatial and temporal fractionations of the delivered dose using synchrotron microbeam radiation therapy,” J. Synchrotron Radiat. 16(4), 587590 (2009).
E. Bräuer-Krisch, C. Nemoz, T. Brochard, G. Berruyer, M. Renier, B. Pouyatos, and R. Serduc, “The preclinical set-up at the ID17 biomedical beamline to achieve high local dose deposition using interlaced microbeams,” J. Phys.: Conf. Ser. 425(2), 022001 (2013).
E. Bräuer-Krisch, H. Requardt, P. Régnard, S. Corde, E. Siegbahn, G. Le Duc, T. Brochard, H. Blattmann, J. A. Laissue, and A. Bravin, “New irradiation geometry for microbeam radiation therapy,” Phys. Med. Biol. 50(13), 31033111 (2005).
I. Martínez-Rovira, J. Sempau, and Y. Prezado, “Development and commissioning of a Monte Carlo photon beam model for the forthcoming clinical trials in microbeam radiation therapy,” Med. Phys. 39(1), 119131 (2012).
H. Requardt, M. Renier, T. Brochard, E. Bräuer-Krisch, A. Bravin, and P. Suortti, “A new gas attenuator system for the ID17 biomedical beamline at the ESRF,” J. Phys.: Conf. Ser. 425(2), 022002 (2013).
P. Berkvens, E. Bräuer-Krisch, T. Brochard, C. Nemoz, M. Renier, P. Fournier, F. Estève, and M. Kocsis, “Highly robust, high intensity white synchrotron beam monitor,” in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, Piscataway, NJ, 2013), pp. 13.
PTW Freiburg (personal communication, 2013).
E. Bräuer-Krisch, H. Requardt, T. Brochard, G. Berruyer, M. Renier, J. A. Laissue, and A. Bravin, “New technology enables high precision multislit collimators for microbeam radiation therapy,” Rev. Sci. Instrum. 80(7), 074301 (2009).
P. Coan, A. Peterzol, S. Fiedler, C. Ponchut, J.-C. Labiche, and A. Bravin, “Evaluation of imaging performance of a taper optics CCD ‘FReLoN’ camera designed for medical imaging,” J. Synchrotron Radiat. 13(3), 260270 (2006).
J.-C. Labiche, O. Mathon, S. Pascarelli, M. Newton, G. G. Ferre, C. Curfs, G. Vaughan, A. Homs, and D. Fernandez Carreiras, “Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis,” Rev. Sci. Instrum. 78(9), 091301 (2007).
R. Serduc, G. Berruyer, T. Brochard, M. Renier, and C. Nemoz, “In vivo pink-beam imaging and fast alignment procedure for rat brain lesion microbeam radiation therapy,” J. Synchrotron Radiat. 17, 325331 (2010).
M. Sánchez del Río and R. J. Dejus, “XOP 2.1—A new version of the x-ray optics software toolkit,” AIP Conf. Proc. 705, 784787 (2004).
Y. Prezado, M. Vautrin, I. Martiínez-Rovira, A. Bravin, F. Estève, H. Elleaume, P. Berkvens, and J. F. Adam, “Dosimetry protocol for the forthcoming clinical trials in synchrotron stereotactic radiation therapy (SSRT),” Med. Phys. 38(3), 17091717 (2011).
A. Krauss, L. Büermann, H.-M. Kramer, and H.-J. Selbach, “Calorimetric determination of the absorbed dose to water for medium-energy x-rays with generating voltages from 70 to 280 kV,” Phys. Med. Biol. 57(19), 62456268 (2012).
L. Büermann (personal communication, 2014).
J. H. Hubbell, “Photon mass attenuation and energy-absorption coefficients from 1 keV to 20 MeV,” Int. J. Appl. Radiat. Isot. 33, 12691290 (1982).
S. Seltzer, “Calculation of photon mass energy-transfer and mass energy-absorption coefficients,” Radiat. Res. 136, 147170 (1993).
B. K. P. Horn, “Closed-form solution of absolute orientation using unit quaternions,” J. Opt. Soc. Am. A 4(4), 629642 (1987).
G. Wahba, “A least squares estimate of satellite attitude,” SIAM Rev. 7(3), 409 (1965).
T. E. Oliphant, “Python for scientific computing,” Comput. Sci. Eng. 9(3), 1020 (2007).
S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy array: A structure for efficient numerical computation,” Comput. Sci. Eng. 13(2), 2230 (2011).
R. Bendl, A. Hoess, and W. Schlegel, “Virtual simulation in radiotherapy planning,” in Computer Vision, Virtual Reality and Robotics in Medicine (Springer, Berlin, Heidelberg, Germany, 1995), pp. 287292.
M. Donzelli, “Implementation of conformal image-guided microbeam radiation therapy for veterinary trials at the ESRF biomedical beamline ID17,” Master’s thesis, Ruprecht-Karls-Universität Heidelberg, 2014.
C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671675 (2012).
ICRP, “Diagnostic reference levels in medical imaging: Review and additional advice,” Ann. ICRP 31(4), 3352 (2001).

Data & Media loading...


Article metrics loading...



Upcoming veterinary trials in microbeam radiation therapy (MRT) demand for more advanced irradiation techniques than in preclinical research with small animals. The treatment of deep-seated tumors in cats and dogs with MRT requires sophisticated irradiation geometries from multiple ports, which impose further efforts to spare the normal tissue surrounding the target.

This work presents the development and benchmarking of a precise patient alignment protocol for MRT at the biomedical beamline ID17 of the . The positioning of the patient prior to irradiation is verified by taking x-ray projection images from different angles.

Using four external fiducial markers of 1.7  mm diameter and computed tomography-based treatment planning, a target alignment error of less than 2  mm can be achieved with an angular deviation of less than 2. Minor improvements on the protocol and the use of smaller markers indicate that even a precision better than 1  mm is technically feasible. Detailed investigations concerning the imaging dose lead to the conclusion that doses for skull radiographs lie in the same range as dose reference levels for human head radiographs. A currently used online dose monitor for MRT has been proven to give reliable results for the imaging beam.

The biomedical beamline ID17 is technically ready to apply conformal image-guided MRT from multiple ports to large animals during future veterinary trials.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd