Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
T. Namikawa, T. Sato, and K. Hanazaki, “Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green,” Surg. Today 45, 14671474 (2015).
T. Hide, S. Yano, N. Shinojima, and J. Kuratsu, “Usefulness of the indocyanine green fluorescence endoscope in endonasal transsphenoidal surgery,” J. Neurosurg. 122, 11851192 (2015).
L. Boni, G. David, A. Mangano, G. Dionigi, S. Rausei, S. Spampatti, E. Cassinotti, and A. Fingerhut, “Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery,” Surg. Endosc. 29, 20462055 (2014).
A. Marano, F. Priora, L. M. Lenti, F. Ravazzoni, R. Quarati, and G. Spinoglio, “Application of fluorescence in robotic general surgery: Review of the literature and state of the art,” World J. Surg. 37, 28002811 (2013).
C. R. Mitchell and S. D. Herrell, “Image-guided surgery and emerging molecular imaging: Advances to complement minimally invasive surgery,” Urol. Clin. North Am. 41, 567580 (2014).
C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: From current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4, 10721084 (2014).
M. P. Laguna, “Are we ready for molecular imaging-guided surgery?,” Eur. Urol. 65, 965966 (2014).
Q. T. Nguyen and R. Y. Tsien, “Fluorescence-guided surgery with live molecular navigation–a new cutting edge,” Nat. Rev. Cancer 13, 653662 (2013).
D. W. Roberts, P. A. Valdes, B. T. Harris, K. M. Fontaine, A. Hartov, X. Fan, S. Ji, S. S. Lollis, B. W. Pogue, F. Leblond, T. D. Tosteson, B. C. Wilson, and K. D. Paulsen, “Coregistered fluorescence-enhanced tumor resection of malignant glioma: Relationships between delta-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article,” J. Neurosurg. 114, 595603 (2011).
A. Bogaards, H. J. Sterenborg, J. Trachtenberg, B. C. Wilson, and L. Lilge, “In vivo quantification of fluorescent molecular markers in real-time by ratio imaging for diagnostic screening and image-guided surgery,” Lasers Surg. Med. 39, 605613 (2007).
K. Stefflova, J. Chen, and G. Zheng, “Using molecular beacons for cancer imaging and treatment,” Front. Biosci. 12, 47094721 (2007).
J. Chen, J. F. Lovell, P. C. Lo, K. Stefflova, M. Niedre, B. C. Wilson, and G. Zheng, “A tumor mRNA-triggered photodynamic molecular beacon based on oligonucleotide hairpin control of singlet oxygen production,” Photochem. Photobiol. Sci. 7, 775781 (2008).
P. C. Lo, J. Chen, K. Stefflova, M. S. Warren, R. Navab, B. Bandarchi, S. Mullins, M. Tsao, J. D. Cheng, and G. Zheng, “Photodynamic molecular beacon triggered by fibroblast activation protein on cancer-associated fibroblasts for diagnosis and treatment of epithelial cancers,” J. Med. Chem. 52, 358368 (2009).
T. Liu, L. Y. Wu, J. K. Choi, and C. E. Berkman, “Targeted photodynamic therapy for prostate cancer: Inducing apoptosis via activation of the caspase-8/-3 cascade pathway,” Int. J. Oncol. 36, 777784 (2010).
B. Q. Spring, A. O. Abu-Yousif, A. Palanisami, I. Rizvi, X. Zheng, Z. Mai, S. Anbil, R. B. Sears, L. B. Mensah, R. Goldschmidt, S. S. Erdem, E. Oliva, and T. Hasan, “Selective treatment and monitoring of disseminated cancer micrometastases in vivo using dual-function, activatable immunoconjugates,” Proc. Natl. Acad. Sci. U. S. A. 111, E933E942 (2014).
R. Ruger, F. L. Tansi, M. Rabenhold, F. Steiniger, R. E. Kontermann, A. Fahr, and I. Hilger, “In vivo near-infrared fluorescence imaging of FAP-expressing tumors with activatable FAP-targeted, single-chain Fv-immunoliposomes,” J. Controlled Release 186, 110 (2014).
S. Mallidi, B. Q. Spring, S. Chang, B. Vakoc, and T. Hasan, “Optical imaging, photodynamic therapy and optically triggered combination treatments,” Cancer J. 21, 194205 (2015).
O. Ilovich, A. Natarajan, S. Hori, A. Sathirachinda, R. Kimura, A. Srinivasan, M. Gebauer, J. Kruip, I. Focken, C. Lange, C. Carrez, I. Sassoon, V. Blanc, S. K. Sarkar, and S. S. Gambhir, “Development and validation of an immuno-PET tracer as a companion diagnostic agent for antibody-drug conjugate therapy to target the CA6 epitope,” Radiology 276, 191198 (2015).
J. Ji, L. Yu, Z. Yu, M. Forgues, T. Uenishi, S. Kubo, K. Wakasa, J. Zhou, J. Fan, Z. Y. Tang, S. Fu, H. Zhu, J. G. Jin, H. C. Sun, and X. W. Wang, “Development of a miR-26 companion diagnostic test for adjuvant interferon-alpha therapy in hepatocellular carcinoma,” Int. J. Biol. Sci. 9, 303312 (2013).
E. de Boer, N. J. Harlaar, A. Taruttis, W. B. Nagengast, E. L. Rosenthal, V. Ntziachristos, and G. M. van Dam, “Optical innovations in surgery,” Br. J. Surg. 102, e56e72 (2015).
A. D. Nunn, “The cost of bringing a radiopharmaceutical to the patient’s bedside,” J. Nucl. Med. 48, 169 (2007).
A. D. Nunn, “The uncertain path to the future of imaging biomarkers,” Q. J. Nucl. Med. Mol. Imaging 51, 9698 (2007).
A. D. Nunn, “The cost of developing imaging agents for routine clinical use,” Invest. Radiol. 41, 206212 (2006).
D. T. Schaefer and L. Baldwin, “The photography of fluorescein-dye fluorescence in surgery,” J. Biol. Photogr. Assoc. 38, 7074 (1970).
S. Andersson-Engels, J. Johansson, and S. Svanberg, “Medical diagnostic system based on simultaneous multispectral fluorescence imaging,” Appl. Opt. 33, 80228029 (1994).
R. Baumgartner, H. Fisslinger, D. Jocham, H. Lenz, L. Ruprecht, H. Stepp, and E. Unsold, “A fluorescence imaging device for endoscopic detection of early stage cancer–instrumental and experimental studies,” Photochem. Photobiol. 46, 759763 (1987).
S. Andersson-Engels, G. Canti, R. Cubeddu, C. Eker, C. af Klinteberg, A. Pifferi, K. Svanberg, S. Svanberg, P. Taroni, G. Valentini, and I. Wang, “Preliminary evaluation of two fluorescence imaging methods for the detection and the delineation of basal cell carcinomas of the skin,” Lasers Surg. Med. 26, 7682 (2000).<76::AID-LSM11>3.0.CO;2-4
A. Leunig, M. Mehlmann, C. Betz, H. Stepp, S. Arbogast, G. Grevers, and R. Baumgartner, “Fluorescence staining of oral cancer using a topical application of 5-aminolevulinic acid: Fluorescence microscopic studies,” J. Photochem. Photobiol. B 60, 4449 (2001).
A. M. De Grand and J. V. Frangioni, “An operational near-infrared fluorescence imaging system prototype for large animal surgery,” Technol. Cancer Res. Treat. 2, 553562 (2003).
J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7, 626634 (2003).
T. Okuda, K. Kataoka, T. Yabuuchi, H. Yugami, and A. Kato, “Fluorescence-guided surgery of metastatic brain tumors using fluorescein sodium,” J. Clin. Neurosci. 17, 118121 (2010).
J. Glatz, J. Varga, P. B. Garcia-Allende, M. Koch, F. R. Greten, and V. Ntziachristos, “Concurrent video-rate color and near-infrared fluorescence laparoscopy,” J. Biomed. Opt. 18, 101302 (2013).
F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, M. Hutteman, B. A. Bonsing, F. W. van Leeuwen, J. V. Frangioni, C. J. van de Velde, R. J. Swijnenburg, and A. L. Vahrmeijer, “Image-guided hepatopancreatobiliary surgery using near-infrared fluorescent light,” J. Hepatobiliary Pancreatic Sci. 19, 626637 (2012).
Y. Ashitate, A. Stockdale, H. S. Choi, R. G. Laurence, and J. V. Frangioni, “Real-time simultaneous near-infrared fluorescence imaging of bile duct and arterial anatomy,” J. Surg. Res. 176, 713 (2012).
Y. Tajima, M. Murakami, K. Yamazaki, Y. Masuda, M. Kato, A. Sato, S. Goto, K. Otsuka, T. Kato, and M. Kusano, “Sentinel node mapping guided by indocyanine green fluorescence imaging during laparoscopic surgery in gastric cancer,” Ann. Surg. Oncol. 17, 17871793 (2010).
P. Hillemanns, H. Weingandt, H. Stepp, R. Baumgartner, W. Xiang, and M. Korell, “Assessment of 5-aminolevulinic acid-induced porphyrin fluorescence in patients with peritoneal endometriosis,” Am. J. Obstet. Gynecol. 183, 5257 (2000).
R. Hornung, A. L. Major, M. McHale, L. H. Liaw, L. A. Sabiniano, B. J. Tromberg, M. W. Berns, and Y. Tadir, “In vivo detection of metastatic ovarian cancer by means of 5-aminolevulinic acid-induced fluorescence in a rat model,” J. Am. Assoc. Gynecol. Laparosc. 5, 141148 (1998).
E. Segal, T. R. Prestwood, W. A. van der Linden, Y. Carmi, N. Bhattacharya, N. Withana, M. Verdoes, A. Habtezion, E. G. Engleman, and M. Bogyo, “Detection of intestinal cancer by local, topical application of a quenched fluorescence probe for cysteine cathepsins,” Chem. Biol. 22, 148158 (2015).
S. Sakuma, J. Y. Yu, T. Quang, K. Hiwatari, H. Kumagai, S. Kao, A. Holt, J. Erskind, R. McClure, M. Siuta, T. Kitamura, E. Tobita, S. Koike, K. Wilson, R. Richards-Kortum, E. Liu, K. Washington, R. Omary, J. C. Gore, and W. Pham, “Fluorescence-based endoscopic imaging of Thomsen-Friedenreich antigen to improve early detection of colorectal cancer,” Int. J. Cancer 136, 10951103 (2015).
H. K. Roy, M. J. Goldberg, S. Bajaj, and V. Backman, “Colonoscopy and optical biopsy: Bridging technological advances to clinical practice,” Gastroenterology 140, 18631867 (2011).
R. S. DaCosta, B. C. Wilson, and N. E. Marcon, “Optical techniques for the endoscopic detection of dysplastic colonic lesions,” Curr. Opin. Gastroenterol. 21, 7079 (2005).
S. Brand, H. Stepp, T. Ochsenkuhn, R. Baumgartner, G. Baretton, J. Holl, C. von Ritter, G. Paumgartner, and M. Sackmann, “Detection of colonic dysplasia by light-induced fluorescence endoscopy: A pilot study,” Int. J. Colorectal Dis. 14, 6368 (1999).
R. M. Cothren et al., “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105111 (1990).
R. S. D’Amico, B. C. Kennedy, and J. N. Bruce, “Neurosurgical oncology: Advances in operative technologies and adjuncts,” J. Neuro-Oncol. 119, 451463 (2014).
Y. Li, R. Rey-Dios, D. W. Roberts, P. A. Valdes, and A. A. Cohen-Gadol, “Intraoperative fluorescence-guided resection of high-grade gliomas: A comparison of the present techniques and evolution of future strategies,” World Neurosurg. 82, 175185 (2014).
P. A. Valdes, V. Jacobs, B. T. Harris, B. C. Wilson, F. Leblond, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence using 5-aminolevulinic acid-induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery,” J. Neurosurg. 123, 771780 (2015).
W. Stummer, J. C. Tonn, C. Goetz, W. Ullrich, H. Stepp, A. Bink, T. Pietsch, and U. Pichlmeier, “5-Aminolevulinic acid-derived tumor fluorescence: The diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging,” Neurosurgery 74, 310319 (2014), discussion 319–320.
J. T. Liu, D. Meza, and N. Sanai, “Trends in fluorescence image-guided surgery for gliomas,” Neurosurgery 75, 6171 (2014).
T. Okuda, H. Yoshioka, and A. Kato, “Fluorescence-guided surgery for glioblastoma multiforme using high-dose fluorescein sodium with excitation and barrier filters,” J. Clin. Neurosci. 19, 17191722 (2012).
M. Hashizume and K. Tsugawa, “Robotic surgery and cancer: The present state, problems and future vision,” Jpn. J. Clin. Oncol. 34, 227237 (2004).
S. D. Herrell, D. M. Kwartowitz, P. M. Milhoua, and R. L. Galloway, “Toward image guided robotic surgery: System validation,” J. Urol. 181, 783789 (2009), discussion, pp. 789–790.
G. Y. Tan, R. K. Goel, J. H. Kaouk, and A. K. Tewari, “Technological advances in robotic-assisted laparoscopic surgery,” Urol. Clin. North Am. 36, 237249 (2009).
J. E. Angell, T. A. Khemees, and R. Abaza, “Optimization of near infrared fluorescence tumor localization during robotic partial nephrectomy,” J. Urol. 190, 16681673 (2013).
R. Autorino, H. Zargar, W. M. White, G. Novara, F. Annino, S. Perdona, M. De Angelis, A. Mottrie, F. Porpiglia, and J. H. Kaouk, “Current applications of near-infrared fluorescence imaging in robotic urologic surgery: A systematic review and critical analysis of the literature,” Urology 84, 751759 (2014).
M. Hassan, A. Kerdok, A. Engel, K. Gersch, and J. M. Smith, “Near infrared fluorescence imaging with ICG in TECAB surgery using the da Vinci Si surgical system in a canine model,” J. Card. Surg. 27, 158162 (2012).
M. Hellan, G. Spinoglio, A. Pigazzi, and J. A. Lagares-Garcia, “The influence of fluorescence imaging on the location of bowel transection during robotic left-sided colorectal surgery,” Surg. Endosc. 28, 16951702 (2014).
M. S. Hockenberry, Z. L. Smith, and P. Mucksavage, “A novel use of near-infrared fluorescence imaging during robotic surgery without contrast agents,” J. Endourol. 28, 509512 (2014).
K. Yuen, T. Miura, I. Sakai, A. Kiyosue, and M. Yamashita, “Intraoperative fluorescence imaging for detection of sentinel lymph nodes and lymphatic vessels during open prostatectomy using indocyanine green,” J. Urol. 194, 371377 (2015).
P. B. van Driel, M. van de Giessen, M. C. Boonstra, T. J. Snoeks, S. Keereweer, S. Oliveira, C. J. van de Velde, B. P. Lelieveldt, A. L. Vahrmeijer, C. W. Lowik, and J. Dijkstra, “Characterization and evaluation of the artemis camera for fluorescence-guided cancer surgery,” Mol. Imaging Biol. 17, 413423 (2015).
N. S. van den Berg, O. R. Brouwer, B. E. Schaafsma, H. M. Matheron, W. M. Klop, A. J. Balm, H. van Tinteren, O. E. Nieweg, F. W. van Leeuwen, and R. A. Valdes Olmos, “Multimodal surgical guidance during sentinel node biopsy for Melanoma: Combined gamma tracing and fluorescence imaging of the sentinel node through use of the hybrid tracer indocyanine green–99mTc-nanocolloid,” Radiology 275, 521529 (2015).
Q. R. Tummers, F. P. Verbeek, H. A. Prevoo, A. E. Braat, C. I. Baeten, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “First experience on laparoscopic near-infrared fluorescence imaging of hepatic uveal melanoma metastases using indocyanine green,” Surg. Innovation 22, 2025 (2015).
R. M. Schols, N. J. Connell, and L. P. Stassen, “Near-infrared fluorescence imaging for real-time intraoperative anatomical guidance in minimally invasive surgery: A systematic review of the literature,” World J. Surg. 39, 10691079 (2015).
O. T. Okusanya, B. Madajewski, E. Segal, B. F. Judy, O. G. Venegas, R. P. Judy, J. G. Quatromoni, M. D. Wang, S. Nie, and S. Singhal, “Small portable interchangeable imager of fluorescence for fluorescence guided surgery and research,” Technol. Cancer Res. Treat. 14, 213220 (2015).
N. Nishigori, F. Koyama, T. Nakagawa, S. Nakamura, T. Ueda, T. Inoue, K. Kawasaki, S. Obara, T. Nakamoto, H. Fujii, and Y. Nakajima, “Visualization of lymph/blood flow in laparoscopic colorectal cancer surgery by ICG fluorescence imaging (Lap-IGFI),” Ann. Surg. Oncol. 23, 266274 (2015).
N. Thekkek, T. Muldoon, A. D. Polydorides, D. M. Maru, N. Harpaz, M. T. Harris, W. Hofstettor, S. P. Hiotis, S. A. Kim, A. J. Ky, S. Anandasabapathy, and R. Richards-Kortum, “Vital-dye enhanced fluorescence imaging of GI mucosa: Metaplasia, neoplasia, inflammation,” Gastrointest. Endosc. 75, 877887 (2012).
P. M. Vila, C. W. Park, M. C. Pierce, G. H. Goldstein, L. Levy, V. V. Gurudutt, A. D. Polydorides, J. H. Godbold, M. S. Teng, E. M. Genden, B. A. Miles, S. Anandasabapathy, A. M. Gillenwater, R. Richards-Kortum, and A. G. Sikora, “Discrimination of benign and neoplastic mucosa with a high-resolution microendoscope (HRME) in head and neck cancer,” Ann. Surg. Oncol. 19, 35343539 (2012).
J. C. Kennedy and R. H. Pottier, “Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy,” J. Photochem. Photobiol. B 14, 275292 (1992).
N. Schoenfeld, R. Mamet, Y. Nordenberg, M. Shafran, T. Babushkin, and Z. Malik, “Protoporphyrin biosynthesis in Melanoma B16 cells stimulated by 5-aminolevulinic acid and chemical inducers: Characterization of photodynamic inactivation,” Int. J. Cancer 56, 106112 (1994).
W. Stummer, S. Stocker, S. Wagner, H. Stepp, C. Fritsch, C. Goetz, A. E. Goetz, R. Kiefmann, and H. J. Reulen, “Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence,” Neurosurgery 42, 518525 (1998), discussion, pp. 516–525.
W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H. J. Reulen, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicentre phase III trial,” Lancet Oncol. 7, 392401 (2006).
P. A. Valdes, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: Implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg. 115, 1117 (2011).
P. Jichlinski, L. Guillou, S. J. Karlsen, P. U. Malmstrom, D. Jocham, B. Brennhovd, E. Johansson, T. Gartner, N. Lange, H. van den Bergh, and H. J. Leisinger, “Hexyl aminolevulinate fluorescence cystoscopy: New diagnostic tool for photodiagnosis of superficial bladder cancer–a multicenter study,” J. Urol. 170, 226229 (2003).
D. Frimberger, D. Zaak, and A. Hofstetter, “Endoscopic fluorescence diagnosis and laser treatment of transitional cell carcinoma of the bladder,” Semin. Urol. Oncol. 18, 264272 (2000).
C. R. Riedl, E. Plas, and H. Pfluger, “Fluorescence detection of bladder tumors with 5-amino-levulinic acid,” J. Endourol. 13, 755759 (1999).
F. Koenig, F. J. McGovern, R. Larne, H. Enquist, K. T. Schomacker, and T. F. Deutsch, “Diagnosis of bladder carcinoma using protoporphyrin IX fluorescence induced by 5-aminolaevulinic acid,” BJU Int. 83, 129135 (1999).
F. Acerbi, M. Broggi, M. Eoli, E. Anghileri, L. Cuppini, B. Pollo, M. Schiariti, S. Visintini, C. Orsi, A. Franzini, G. Broggi, and P. Ferroli, “Fluorescein-guided surgery for grade IV gliomas with a dedicated filter on the surgical microscope: Preliminary results in 12 cases,” Acta Neurochir. (Wien) 155, 12771286 (2013).
M. A. Kamp, P. Slotty, B. Turowski, N. Etminan, H. J. Steiger, D. Hanggi, and W. Stummer, “Microscope-integrated quantitative analysis of intraoperative indocyanine green fluorescence angiography for blood flow assessment: First experience in 30 patients,” Neurosurgery 70, 6573 (2012), discussion pp. 64–73.
T. Murakami, I. Koyanagi, T. Kaneko, S. Iihoshi, and K. Houkin, “Intraoperative indocyanine green videoangiography for spinal vascular lesions: Case report,” Neurosurgery 68, 241245 (2011), discussion, p. 245.
B. Zhu, J. C. Rasmussen, and E. M. Sevick-Muraca, “A matter of collection and detection for intraoperative and noninvasive near-infrared fluorescence molecular imaging: To see or not to see?,” Med. Phys. 41(2), 022105 (11pp.) (2014).
K. Hwang, J. P. Houston, J. C. Rasmussen, A. Joshi, S. Ke, C. Li, and E. M. Sevick-Muraca, “Improved excitation light rejection enhances small-animal fluorescent optical imaging,” Mol. Imaging 4, 194204 (2005).
K. Sexton, S. C. Davis, D. McClatchy III, P. A. Valdes, S. C. Kanick, K. D. Paulsen, D. W. Roberts, and B. W. Pogue, “Pulsed-light imaging for fluorescence guided surgery under normal room lighting,” Opt. Lett. 38, 32493252 (2013).
S. Tauber, H. Stepp, R. Meier, A. Bone, A. Hofstetter, and C. Stief, “Integral spectrophotometric analysis of 5-aminolaevulinic acid-induced fluorescence cytology of the urinary bladder,” BJU Int. 97, 992996 (2006).
J. W. Tunnell, A. E. Desjardins, L. Galindo, I. Georgakoudi, S. A. McGee, J. Mirkovic, M. G. Mueller, J. Nazemi, F. T. Nguyen, A. Wax, Q. Zhang, R. R. Dasari, and M. S. Feld, “Instrumentation for multi-modal spectroscopic diagnosis of epithelial dysplasia,” Technol. Cancer Res. Treat. 2, 505514 (2003).
M. Cardenas-Turanzas, J. A. Freeberg, J. L. Benedet, E. N. Atkinson, D. D. Cox, R. Richards-Kortum, C. MacAulay, M. Follen, and S. B. Cantor, “The clinical effectiveness of optical spectroscopy for the in vivo diagnosis of cervical intraepithelial neoplasia: Where are we?,” Gynecol. Oncol. 107, S138S146 (2007).
R. S. DaCosta, B. C. Wilson, and N. E. Marcon, “Fluorescence and spectral imaging,” Sci. World J. 7, 20462071 (2007).
D. Comelli, G. Valentini, A. Nevin, A. Farina, L. Toniolo, and R. Cubeddu, “A portable UV-fluorescence multispectral imaging system for the analysis of painted surfaces,” Rev. Sci. Instrum. 79, 086112 (2008).
A. DSouza, H. Lin, J. Gunn, and B. W. Pogue, “Logarithmic intensity compression in fluorescence guided surgery applications,” J. Biomed. Opt. 20, 80504 (2015).
J. T. Elliott, A. V. Dsouza, S. C. Davis, J. D. Olson, K. D. Paulsen, D. W. Roberts, and B. W. Pogue, “Review of fluorescence guided surgery visualization and overlay techniques,” Biomed. Opt. Express 6, 37653782 (2015).
C. Parmar, P. Grossmann, J. Bussink, P. Lambin, and H. J. Aerts, “Machine learning methods for quantitative radiomic biomarkers,” Sci. Rep. 5, 13087 (2015).
C. Parmar, R. T. Leijenaar, P. Grossmann, E. Rios Velazquez, J. Bussink, D. Rietveld, M. M. Rietbergen, B. Haibe-Kains, P. Lambin, and H. J. Aerts, “Radiomic feature clusters and prognostic signatures specific for lung and head and neck cancer,” Sci. Rep. 5, 11044 (2015).
T. P. Coroller, P. Grossmann, Y. Hou, E. Rios Velazquez, R. T. Leijenaar, G. Hermann, P. Lambin, B. Haibe-Kains, R. H. Mak, and H. J. Aerts, “CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma,” Radiother. Oncol. 114, 345350 (2015).
L. Wei, S. A. Lin, K. Fan, D. Xiao, J. Hong, and S. Wang, “Relationship between pituitary adenoma texture and collagen content revealed by comparative study of MRI and pathology analysis,” Int. J. Clin. Exp. Med. 8, 1289812905 (2015).
F. Dong, H. Irshad, E. Y. Oh, M. F. Lerwill, E. F. Brachtel, N. C. Jones, N. W. Knoblauch, L. Montaser-Kouhsari, N. B. Johnson, L. K. Rao, B. Faulkner-Jones, D. C. Wilbur, S. J. Schnitt, and A. H. Beck, “Computational pathology to discriminate benign from malignant intraductal proliferations of the breast,” PLoS One 9, e114885 (2014).
F. Wang, J. Kong, L. Cooper, T. Pan, T. Kurc, W. Chen, A. Sharma, C. Niedermayr, T. W. Oh, D. Brat, A. B. Farris, D. J. Foran, and J. Saltz, “A data model and database for high-resolution pathology analytical image informatics,” J. Pathol. Inf. 2, 32 (2011).
C. Cordon-Cardo, A. Kotsianti, D. A. Verbel, M. Teverovskiy, P. Capodieci, S. Hamann, Y. Jeffers, M. Clayton, F. Elkhettabi, F. M. Khan, M. Sapir, V. Bayer-Zubek, Y. Vengrenyuk, S. Fogarsi, O. Saidi, V. E. Reuter, H. I. Scher, M. W. Kattan, F. J. Bianco, T. M. Wheeler, G. E. Ayala, P. T. Scardino, and M. J. Donovan, “Improved prediction of prostate cancer recurrence through systems pathology,” J. Clin. Invest. 117, 18761883 (2007).
J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15, 026028 (2010).
D. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Fluorescence tomography characterization for sub-surface imaging with protoporphyrin IX,” Opt. Express 16, 85818593 (2008).
D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46, 16691678 (2007).
K. Polom, D. Murawa, Y. S. Rho, P. Nowaczyk, M. Hunerbein, and P. Murawa, “Current trends and emerging future of indocyanine green usage in surgery and oncology: A literature review,” Cancer 117, 48124822 (2011).
M. V. Marshall, J. C. Rasmussen, I. C. Tan, M. B. Aldrich, K. E. Adams, X. Wang, C. E. Fife, E. A. Maus, L. A. Smith, and E. M. Sevick-Muraca, “Near-infrared fluorescence imaging in humans with indocyanine green: A review and update,” Open Surg. Oncol. J. 2, 1225 (2010).
D. Stanescu-Segall and T. L. Jackson, “Vital staining with indocyanine green: A review of the clinical and experimental studies relating to safety,” Eye (London) 23, 504518 (2009).
T. J. Ffytche, J. S. Shilling, I. H. Chisholm, and J. L. Federman, “Indications for fluorescein angiography in disease of the ocular fundus: A review,” J. R. Soc. Med. 73, 362365 (1980).
W. N. Wykes and S. J. Livesey, “Review of fluorescein angiograms performed in one year,” Br. J. Ophthalmol. 75, 398400 (1991).
L. Xu, H. R. Su, G. R. Sun, Y. Wang, S. J. Guo, X. R. Zhang, S. S. Zhang, and S. C. Xing, “Fluorescein-labeled ‘arch-like’ DNA probes for electrochemical detection of DNA on gold nanoparticle-modified gold electrodes,” J. Biotechnol. 168, 388393 (2013).
H. Tsujimoto, Y. Morimoto, R. Takahata, S. Nomura, K. Yoshida, H. Horiguchi, S. Hiraki, S. Ono, H. Miyazaki, D. Saito, I. Hara, E. Ozeki, J. Yamamoto, and K. Hase, “Photodynamic therapy using nanoparticle loaded with indocyanine green for experimental peritoneal dissemination of gastric cancer,” Cancer Sci. 105, 16261630 (2014).
F. P. Navarro, M. Berger, S. Guillermet, V. Josserand, L. Guyon, E. Neumann, F. Vinet, and I. Texier, “Lipid nanoparticle vectorization of indocyanine green improves fluorescence imaging for tumor diagnosis and lymph node resection,” J. Biomed. Nanotechnol. 8, 730741 (2012).
B. W. Pogue, “Optics in the molecular imaging race,” Opt. Photonics News 26, 2531 (2015).
H. Lee, J. Kim, H. Kim, Y. Kim, and Y. Choi, “A folate receptor-specific activatable probe for near-infrared fluorescence imaging of ovarian cancer,” Chem. Commun. (Cambridge) 50, 75077510 (2014).
S. Mitra, K. D. Modi, and T. H. Foster, “Enzyme-activatable imaging probe reveals enhanced neutrophil elastase activity in tumors following photodynamic therapy,” J. Biomed. Opt. 18, 101314 (2013).
Q. T. Nguyen, E. S. Olson, T. A. Aguilera, T. Jiang, M. Scadeng, L. G. Ellies, and R. Y. Tsien, “Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival,” Proc. Natl. Acad. Sci. U. S. A. 107, 43174322 (2010).
E. S. Olson, T. Jiang, T. A. Aguilera, Q. T. Nguyen, L. G. Ellies, M. Scadeng, and R. Y. Tsien, “Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases,” Proc. Natl. Acad. Sci. U. S. A. 107, 43114316 (2010).
Y. Urano, D. Asanuma, Y. Hama, Y. Koyama, T. Barrett, M. Kamiya, T. Nagano, T. Watanabe, A. Hasegawa, P. L. Choyke, and H. Kobayashi, “Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes,” Nat. Med. 15, 104109 (2009).
Y. Hama, Y. Urano, Y. Koyama, P. L. Choyke, and H. Kobayashi, “Activatable fluorescent molecular imaging of peritoneal metastases following pretargeting with a biotinylated monoclonal antibody,” Cancer Res. 67, 38093817 (2007).
E. Chang, M. Q. Zhu, and R. Drezek, “Novel siRNA-based molecular beacons for dual imaging and therapy,” Biotechnol. J. 2, 422425 (2007).
L. Yang, Z. Cao, Y. Lin, W. C. Wood, and C. A. Staley, “Molecular beacon imaging of tumor marker gene expression in pancreatic cancer cells,” Cancer Biol. Ther. 4, 561570 (2005).
W. Pan, H. Yang, N. Li, L. Yang, and B. Tang, “Simultaneous visualization of multiple mRNAs and matrix metalloproteinases in living cells using a fluorescence nanoprobe,” Chemistry 21, 60706073 (2015).
Y. Hiroshima, A. Maawy, C. A. Metildi, Y. Zhang, F. Uehara, S. Miwa, S. Yano, S. Sato, T. Murakami, M. Momiyama, T. Chishima, K. Tanaka, M. Bouvet, I. Endo, and R. M. Hoffman, “Successful fluorescence-guided surgery on human colon cancer patient-derived orthotopic xenograft mouse models using a fluorophore-conjugated anti-CEA antibody and a portable imaging system,” J. Laparoendosc. Adv. Surg. Tech. A 24, 241247 (2014).
T. Jin, D. K. Tiwari, S. Tanaka, Y. Inouye, K. Yoshizawa, and T. M. Watanabe, “Antibody-protein A conjugated quantum dots for multiplexed imaging of surface receptors in living cells,” Mol. Biosyst. 6, 23252331 (2010).
T. Nakajima, M. Mitsunaga, N. H. Bander, W. D. Heston, P. L. Choyke, and H. Kobayashi, “Targeted, activatable, in vivo fluorescence imaging of prostate-specific membrane antigen (PSMA) positive tumors using the quenched humanized J591 antibody-indocyanine green (ICG) conjugate,” Bioconjugate Chem. 22, 17001705 (2011).
A. S. van Brussel, A. Adams, J. F. Vermeulen, S. Oliveira, E. van der Wall, W. P. Mali, P. J. van Diest, and P. M. van Bergen En Henegouwen, “Molecular imaging with a fluorescent antibody targeting carbonic anhydrase IX can successfully detect hypoxic ductal carcinoma in situ of the breast,” Breast Cancer Res. Treat. 140, 263272 (2013).
H. Xu, P. K. Eck, K. E. Baidoo, P. L. Choyke, and M. W. Brechbiel, “Toward preparation of antibody-based imaging probe libraries for dual-modality positron emission tomography and fluorescence imaging,” Bioorg. Med. Chem. 17, 51765181 (2009).
G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: First in-human results,” Nat. Med. 17, 13151319 (2011).
M. L. Korb, Y. E. Hartman, J. Kovar, K. R. Zinn, K. I. Bland, and E. L. Rosenthal, “Use of monoclonal antibody-IRDye800CW bioconjugates in the resection of breast cancer,” J. Surg. Res. 188, 119128 (2014).
C. H. Heath, N. L. Deep, L. N. Beck, K. E. Day, L. Sweeny, K. R. Zinn, C. C. Huang, and E. L. Rosenthal, “Use of panitumumab-IRDye800 to image cutaneous head and neck cancer in mice,” Otolaryngol. Head Neck Surg. 148, 982990 (2013).
R. Watanabe, K. Sato, H. Hanaoka, T. Harada, T. Nakajima, I. Kim, C. H. Paik, A. M. Wu, P. L. Choyke, and H. Kobayashi, “Minibody-indocyanine green based activatable optical imaging probes: The role of short polyethylene glycol linkers,” ACS Med. Chem. Lett. 5, 411415 (2014).
K. Sano, T. Nakajima, T. Ali, D. W. Bartlett, A. M. Wu, I. Kim, C. H. Paik, P. L. Choyke, and H. Kobayashi, “Activatable fluorescent cys-diabody conjugated with indocyanine green derivative: Consideration of fluorescent catabolite kinetics on molecular imaging,” J. Biomed. Opt. 18, 101304 (2013).
T. Olafsen and A. M. Wu, “Antibody vectors for imaging,” Semin. Nucl. Med. 40, 167181 (2010).
K. S. Samkoe, K. M. Tichauer, J. R. Gunn, W. A. Wells, T. Hasan, and B. W. Pogue, “Quantitative in vivo immunohistochemistry of epidermal growth factor receptor using a receptor concentration imaging approach,” Cancer Res. 15, 74657474 (2014).
K. M. Tichauer, K. S. Samkoe, K. J. Sexton, S. K. Hextrum, H. H. Yang, W. S. Klubben, J. R. Gunn, T. Hasan, and B. W. Pogue, “In vivo quantification of tumor receptor binding potential with dual-reporter molecular imaging,” Mol. Imaging Biol. 14, 584592 (2011).
K. M. Tichauer, Y. Wang, B. W. Pogue, and J. T. Liu, “Quantitative in vivo cell–surface receptor imaging in oncology: Kinetic modeling and paired-agent principles from nuclear medicine and optical imaging,” Phys. Med. Biol. 60, R239R269 (2015).
J. T. Elliott, K. S. Samkoe, S. C. Davis, J. R. Gunn, K. D. Paulsen, D. W. Roberts, and B. W. Pogue, “Image-derived arterial input function for quantitative fluorescence imaging of receptor-drug binding in vivo,” J Biophotonics 9, 282295 (2016).
B. W. Pogue, K. S. Samkoe, S. Hextrum, J. A. O’Hara, M. Jermyn, S. Srinivasan, and T. Hasan, “Imaging targeted-agent binding in vivo with two probes,” J. Biomed. Opt. 15, 030513 (2010).
A. Orlova, V. Tolmachev, R. Pehrson, M. Lindborg, T. Tran, M. Sandstrom, F. Y. Nilsson, A. Wennborg, L. Abrahmsen, and J. Feldwisch, “Synthetic affibody molecules: A novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumors,” Cancer Res. 67, 21782186 (2007).
J. H. Herndon, R. Hwang, and K. J. Bozic, “Healthcare technology and technology assessment,” Eur. Spine J. 16, 12931302 (2007).
FDA, Guidance for Industry, Investigators, and Reviewers: Exploratory IND Studies (FDA, Washington, DC, 2006).
B. W. Pogue, K. D. Paulsen, S. M. Hull, K. S. Samkoe, J. Gunn, J. Hoopes, D. W. Roberts, T. V. Strong, D. Draney, and J. Feldwisch, “Advancing molecular-guided surgery through probe development and testing in a moderate cost evaluation pipeline,” Proc. SPIE 9311, 931112 (2015).

Data & Media loading...


Article metrics loading...



Surgical guidance with fluorescence has been demonstrated in individual clinical trials for decades, but the scientific and commercial conditions exist today for a dramatic increase in clinical value. In the past decade, increased use of indocyanine green based visualization of vascular flow, biliary function, and tissue perfusion has spawned a robust growth in commercial systems that have near-infrared emission imaging and video display capabilities. This recent history combined with major preclinical innovations in fluorescent-labeled molecular probes, has the potential for a shift in surgical practice toward resection guidance based upon molecular information in addition to conventional visual and palpable cues. Most surgical subspecialties already have treatment management decisions partially based upon the immunohistochemical phenotype of the cancer, as assessed from molecular pathology of the biopsy tissue. This phenotyping can inform the surgical resection process by spatial mapping of these features. Further integration of the diagnostic and therapeutic value of tumor metabolism sensing molecules or immune binding agents directly into the surgical process can help this field mature. Maximal value to the patient would come from identifying the spatial patterns of molecular expression that are well known to exist. However, as each molecular agent is advanced into trials, the performance of the imaging system can have a critical impact on the success. For example, use of pre-existing commercial imaging systems are not well suited to image receptor targeted fluorophores because of the lower concentrations expected, requiring orders of magnitude more sensitivity. Additionally the imaging system needs the appropriate dynamic range and image processing features to view molecular probes or therapeutics that may have nonspecific uptake or pharmacokinetic issues which lead to limitations in contrast. Imaging systems need to be chosen based upon objective performance criteria, and issues around calibration, validation, and interpretation need to be established before a clinical trial starts. Finally, as early phase trials become more established, the costs associated with failures can be crippling to the field, and so judicious use of phase 0 trials with microdose levels of agents is one viable paradigm to help the field advance, but this places high sensitivity requirements on the imaging systems used. Molecular-guided surgery has truly transformative potential, and several key challenges are outlined here with the goal of seeing efficient advancement with ideal choices. The focus of this vision 20/20 paper is on the technological aspects that are needed to be paired with these agents.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd