Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
R. Nath, L. L. Anderson, G. Luxton, K. A. Weaver, J. F. Williamson, and A. S. Meigooni, “Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine,” Med. Phys. 22, 209234 (1995).
M. J. Rivard, B. M. Coursey, L. A. DeWerd, W. F. Hanson, M. S. Huq, G. S. Ibbott, M. G. Mitch, R. Nath, and J. F. Williamson, “Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations,” Med. Phys. 31, 633674 (2004).
R. Nath, L. L. Anderson, J. A. Meli, A. J. Olch, J. A. Stitt, and J. F. Williamson, “Code of practice for brachytherapy physics: Report of the AAPM Radiation Therapy Committee Task Group No. 56. American Association of Physicists in Medicine,” Med. Phys. 24, 15571598 (1997).
J. Venselaar and J. Perez-Calatayud, “A practical guide to quality control of brachytherapy equipment,” in European Guidelines for Quality Assurance in Radiotherapy: Booklet No. 8, 1st ed. (ESTRO, Brussels, Belgium, 2004),—a-practical-guide-to-quality-control-of-brachytherapy-equipment.pdf.
W. M. Butler and G. S. Merrick, “Clinical practice and quality assurance challenges in modern brachytherapy sources and dosimetry,” Int. J. Radiat. Oncol., Biol., Phys. 71, S142S146 (2008).
W. M. Butler, M. S. Huq, Z. Li, B. R. Thomadsen, L. A. DeWerd, G. S. Ibbott, M. G. Mitch, R. Nath, M. J. Rivard, J. F. Williamson, N. J. Yue, and M. Zaider, “Third-party brachytherapy source calibrations and physicist responsibilities: Report of the AAPM Low Energy Brachytherapy Source Calibration Working Group,” Med. Phys. 35, 38603865 (2008).
B. Coursey and R. Nath, “Radionuclide therapy,” Phys. Today 53(4), 2530 (2000).
B. R. Thomadsen, J. F. Williamson, M. J. Rivard, and A. S. Meigooni, “Anniversary paper: Past and current issues, and trends in brachytherapy physics,” Med. Phys. 35, 47084723 (2008).
R. Nath, “New directions in radionuclide sources for brachytherapy,” Semin. Radiat. Oncol. 3, 278289 (1993).
L. A. DeWerd, M. S. Huq, I. J. Das, G. S. Ibbott, W. F. Hanson, T. W. Slowey, J. F. Williamson, and B. M. Coursey, “Procedures for establishing and maintaining consistent air-kerma strength standards for low-energy, photon-emitting brachytherapy sources: Recommendations of the Calibration Laboratory Accreditation Subcommittee of the American Association of Physicists in Medicine,” Med. Phys. 31, 675681 (2004).
J. Pérez-Calatayud, F. Ballester, R. K. Das, L. A. DeWerd, G. S. Ibbott, A. S. Meigooni, Z. Ouhib, M. J. Rivard, R. S. Sloboda, and J. F. Williamson, “Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: Report of the AAPM and ESTRO,” Med. Phys. 39, 29042929 (2012).
D. Beyer, R. Nath, W. Butler, G. Merrick, J. Blasko, S. Nag, and C. Orton, “American Brachytherapy Society recommendations for clinical implementation of NIST-1999 standards for (103)palladium brachytherapy. The clinical research committee of the American Brachytherapy Society,” Int. J. Radiat. Oncol., Biol., Phys. 47, 273275 (2000).
T. P. Loftus, “Exposure standardization of iodine-125 seeds used for brachytherapy,” J. Res. Natl. Bur. Stand. 89, 295303 (1984).
H. Kubo, “Exposure contribution from Ti K x rays produced in the titanium capsule of the clinical 125I seed,” Med. Phys. 12, 215220 (1985).
J. F. Williamson, “Monte Carlo evaluation of specific dose constants in water for 125I seeds,” Med. Phys. 15, 686694 (1988).
R. Loevinger, “Wide-angle free-air chamber for calibration of low-energy brachytherapy sources,” Med. Phys. 20, 907 (1993).
J. F. Williamson and M. J. Rivard, “Quantitative dosimetry methods for brachytherapy,” in Brachytherapy Physics, 2nd ed., edited by B. Thomadsen, M. J. Rivard, and W. M. Butler (Medical Physics Publishing, Madison, WI, 2005).
J. F. Williamson and M. J. Rivard, “Thermoluminescent detector and Monte Carlo techniques for reference-quality brachytherapy dosimetry,” in Clinical Dosimetry for Radiotherapy: AAPM Summer School, edited by D. W. O. Rogers and J. E. Cygler (Medical Physics Publishing, Madison, WI, 2009), pp. 437499.
L. A. DeWerd, G. S. Ibbott, A. S. Meigooni, M. G. Mitch, M. J. Rivard, K. E. Stump, B. R. Thomadsen, and J. L. M. Venselaar, “A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO,” Med. Phys. 38, 782801 (2011).
C. Kirisits, M. J. Rivard, D. Baltas, F. Ballester, M. De Brabandere, R. van der Laarse, Y. Niatsetski, P. Papagiannis, T. Paulsen Hellebust, J. Perez-Calatayud, K. Tanderup, J. L. M. Venselaar, and F.-A. Siebert, “Review of clinical brachytherapy uncertainties: Analysis guidelines of GEC-ESTRO and the AAPM,” Radiother. Oncol. 110, 199212 (2014).
S. Nag, R. Dobelbower, G. Glasgow, G. Gustafson, N. Syed, B. Thomadsen, and J. F. Williamson, “Inter-society standards for the performance of brachytherapy: A joint report from ABS, ACMP and ACRO,” Crit. Rev. Oncol. Hematol. 48, 117 (2003).
G. J. Kutcher, L. Coia, M. Gillin, W. F. Hanson, S. Liebel, R. J. Morton, J. R. Palta, J. A. Purdy, L. E. Reinstein, G. K. Svensson, M. Weller, and L. Wingfield, “Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40,” Med. Phys. 21, 581618 (1994).
B. R. Thomadsen, H. T. Heaton II, S. K. Jani, J. P. Masten, M. E. Napolitano, Z. Ouhib, C. S. Reft, M. J. Rivard, T. T. Robin, M. Subramanian, and O. H. Suleiman, “Off-label use of medical products in radiation therapy: Summary of the Report of AAPM Task Group No. 121,” Med. Phys. 37, 23002311 (2010).
E. C. Ford, R. Gaudette, L. Myers, B. Vanderver, L. Engineer, R. Zellars, D. Y. Song, J. Wong, and T. L. Deweese, “Evaluation of safety in a radiation oncology setting using failure mode and effects analysis,” Int. J. Radiat. Oncol., Biol., Phys. 74, 852858 (2009).
M. S. Huq, B. A. Fraass, P. B. Dunscombe, J. P. Gibbons, Jr., G. S. Ibbott, A. J. Mundt, S. Mutic, J. R. Palta, F. Rath, B. R. Thomadsen, J. F. Williamson, and E. D. Yorke, “The Report of Task Group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management,” Med. Phys. (unpublished).
D. A. Wilkinson and M. D. Kolar, “Failure modes and effects analysis applied to high-dose-rate brachytherapy treatment planning,” Brachytherapy 12, 382386 (2013).
A. L. Damato, L. J. Lee, M. S. Bhagwat, I. Buzurovic, R. A. Cormack, S. Finucane, J. L. Hansen, D. A. O’Farrell, A. Offiong, U. Randall, S. Friesen, and A. N. Viswanathan, “Redesign of process map to increase efficiency: Reducing procedure time in cervical cancer,” Brachytherapy 14, 471480 (2015).
J. Mayadev, S. Dieterich, R. Harse, S. Lentz, M. Mathai, S. Boddu, M. Kern, J. Courquin, and R. L. Stern, “A failure modes and effects analysis study for gynecologic high-dose-rate brachytherapy,” Brachytherapy 14, 866875 (2015).
ISO 2919:2012, Radiological protection—Sealed radioactive sources—General requirements and classification, International Organization for Standardization, Geneva, Switzerland, 2012.
M. J. Rivard, “Burst calculations for 252Cf brachytherapy sources,” Med. Phys. 27, 28162820 (2000).
T. K. Podder, L. Beaulieu, B. Caldwell, R. A. Cormack, J. B. Crass, A. P. Dicker, A. Fenster, G. Fichtinger, M. A. Meltsner, M. A. Moerland, R. Nath, M. J. Rivard, T. Salcudean, D. Y. Song, B. R. Thomadsen, and Y. Yu, “AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: Report of Task Group 192,” Med. Phys. 41, 101501 (1pp.) (2014).
N. J. Yue, Z. Chen, R. A. Hearn, J. J. Rodgers, and R. Nath, “Time dependence of energy spectra of brachytherapy sources and its impact on the half and tenth value layers,” Med. Phys. 36, 51755182 (2009).
V. E. Nuttens and S. Lucas, “AAPM TG-43U1 formalism adaptation and Monte Carlo dosimetry simulations of multiple-radionuclide brachytherapy sources,” Med. Phys. 33, 11011107 (2006).
V. E. Nuttens and S. Lucas, “Determination of the prescription dose for biradionuclide permanent prostate brachytherapy,” Med. Phys. 35, 54515462 (2008).
J. F. Williamson, B. M. Coursey, L. A. DeWerd, W. F. Hanson, and R. Nath, “Dosimetric prerequisites for routine clinical use of new low energy photon interstitial brachytherapy sources. Recommendations of the American Association of Physicists in Medicine Radiation Therapy Committee. Ad Hoc Subcommittee of the Radiation Therapy Committee,” Med. Phys. 25, 22692270 (1998).
A. B. Paxton, W. S. Culberson, L. A. DeWerd, and J. A. Micka, “Primary calibration of coiled 103Pd brachytherapy sources,” Med. Phys. 35, 3238 (2008).
S. J. Goetsch, F. H. Attix, D. W. Pearson, and B. R. Thomadsen, “Calibration of 192Ir high-dose-rate afterloading systems,” Med. Phys. 18, 462467 (1991).
K. E. Stump, L. A. DeWerd, J. A. Micka, and D. R. Anderson, “Calibration of new high dose rate 192Ir sources,” Med. Phys. 29, 14831488 (2002).
B. E. Rasmussen, S. D. Davis, C. R. Schmidt, J. A. Micka, and L. A. DeWerd, “Comparison of air-kerma strength determinations for HDR 192Ir sources,” Med. Phys. 38, 67216729 (2011).
S. J. Goetsch, F. H. Attix, L. A. DeWerd, and B. R. Thomadsen, “A new re-entrant ionization chamber for the calibration of iridium-192 high dose rate sources,” Int. J. Radiat. Oncol., Biol., Phys. 24, 167170 (1992).
T. Sander, “Air kerma and absorbed dose standards for reference dosimetry in brachytherapy,” Br. J. Radiol. 87, 20140176 (2014).
G. Douysset, J. Gouriou, F. Delaunay, L. DeWerd, K. Stump, and J. Micka, “Comparison of dosimetric standards of USA and France for HDR brachytherapy,” Phys. Med. Biol. 50, 19611978 (2000).
G. Douysset, T. Sander, J. Gouriou, and R. Nutbrown, “Comparison of air kerma standards of LNE-LNHB and NPL for 192Ir HDR brachytherapy sources: EUROMET Project No. 814,” Phys. Med. Biol. 53, N85N97 (2008).
D. Butler, A. Haworth, T. Sander, and S. Todd, “Comparison of 192Ir air kerma calibration coefficients derived at ARPANSA using the interpolation method and at the National Physical Laboratory using a direct measurement,” Australas. Phys. Eng. Sci. Med. 31, 332338 (2008).
J. T. Alvarez, T. Sander, J. A. de Pooter, P. J. Allisy-Roberts, and C. Kessler, “Comparison BIPM.RI(I)-K8 of high dose rate 192Ir brachytherapy standards for reference air kerma rate of the NPL and the BIPM,” Metrologia 51(Tech. Suppl.), 06024 (12pp.) (2014).
A. A. Hasin, P. Chaurasia, and G. A. Zakaria, Status of Brachytherapy: Bangladesh and Nepal, 2008,
G. P. Glasgow, J. D. Bourland, P. W. Grisby, J. A. Meli, and K. A. Weaver, Remote Afterloading Technoloy: A Report of AAPM Task Group 41 (American Institute of Physics, Inc., New York, NY, 1993).
P. Papagiannis, A. Angelopoulos, E. Pantelis, L. Sakelliou, P. Karaiskos, and Y. Shimizu, “Monte Carlo dosimetry of 60Co HDR brachytherapy sources,” Med. Phys. 30, 712721 (2003).
J. Richter, K. Baier, and M. Flentje, “Comparison of 60cobalt and 192iridium sources in high dose rate after loading brachytherapy,” Strahlenther. Onkol. 184, 187192 (2008).
F. Ballester, D. Granero, J. Pérez-Calatayud, E. Casal, S. Agramunt, and R. Cases, “Monte Carlo dosimetric study of the BEBIG Co-60 HDR source,” Phys. Med. Biol. 50, N309N316 (2005).
D. Granero, J. Perez-Calatayud, and F. Ballester, “Technical Note: Dosimetric study of a new Co-60 source used in brachytherapy,” Med. Phys. 34, 34853488 (2007).
T. Inoue, “The trail of the development of high-dose-rate brachytherapy for cervical cancer in Japan,” Jpn. J. Clin. Oncol. 33, 327330 (2003).
T. Toita, K. Nakamura, T. Uno, T. Kodaira, A. Shinoda, K. Ogawa, N. Mitsuhashi, K. Maebayashi, A. Kawaguchi, T. Inoue, T. Teshima, and Japanese PCS Working Subgroup of Uterine Cervical Cancer, “Radiotherapy for uterine cervical cancer: Results of the 1995-1997 patterns of care process survey in Japan,” Jpn. J. Clin. Oncol. 35, 139148 (2005).
J. F. Williamson, W. Butler, L. A. DeWerd, M. S. Huq, G. S. Ibbott, Z. Li, M. G. Mitch, R. Nath, M. J. Rivard, and D. Todor, “Recommendations of the American Association of Physicists in Medicine regarding the impact of implementing the 2004 Task Group 43 Report on dose specification for 103Pd and 125I interstitial brachytherapy,” Med. Phys. 32, 14241439 (2005).
M. J. Rivard and R. Nath, “Interstitial brachytherapy dosimetry update,” Radiat. Prot. Dosim. 120, 6469 (2006).
H. Afsharpour, M. D’Amours, B. Coté, J.-F. Carrier, F. Verhaegen, and L. Beaulieu, “A Monte Carlo study on the effect of seed design on the interseed attenuation in permanent prostate implants,” Med. Phys. 35, 36713681 (2008).
A. S. Meigooni, J. A. Meli, and R. Nath, “Interseed effects on dose for I-125 and brachytherapy implants,” Med. Phys. 19, 385390 (1992).
A. S. Meigooni, J. A. Meli, and R. Nath, “A comparison of solid phantoms with water for dosimetry of 125I brachytherapy sources,” Med. Phys. 15, 695701 (1988).
A. S. Meigooni, S. B. Awan, N. S. Thompson, and S. A. Dini, “Updated Solid Water™ to water conversion factors for 125I and 103Pd brachytherapy sources,” Med. Phys. 33, 39883992 (2006).
M. K. Murphy, R. K. Piper, L. R. Greenwood, M. G. Mitch, P. J. Lamperti, S. M. Seltzer, M. J. Bales, and M. H. Phillips, “Evaluation of the new cesium-131 seed for use in low-energy x-ray brachytherapy,” Med. Phys. 31, 15291538 (2004).
Z. Chen, P. Bongiorni, and R. Nath, “Dose rate constant of a cesium-131 interstitial brachytherapy seed measured by thermoluminescent dosimetry and gamma-ray spectrometry,” Med. Phys. 32, 32793285 (2005).
R. S. Wittman and D. R. Fisher, “Multiple-estimate Monte Carlo calculation of the dose rate constant for a cesium-131 interstitial brachytherapy seed,” Med. Phys. 34, 4954 (2007).
M. J. Rivard, “Brachytherapy dosimetry parameters calculated for a 131Cs source,” Med. Phys. 34, 754762 (2007).
J. Wang and H. Zhang, “Dosimetric characterization of model Cs-1 Rev2 cesium-131 brachytherapy source in water phantoms and human tissues with MCNP5 Monte Carlo simulation,” Med. Phys. 35, 15711579 (2008).
D. J. Gladstone, (private communication, 15 September 2014).
G. Marinello, M. Valero, S. Leung, and B. Pierquin, “Comparative dosimetry between iridium wires and seed ribbons,” Int. J. Radiat. Oncol., Biol., Phys. 11, 17331739 (1985).
J. Pérez-Calatayud, F. Ballester, Y. Limami, L. A. DeWerd, and K. Nelson, “Assessment of the linear reference air kerma rate of 192Ir wires,” Phys. Med. Biol. 46, 22012207 (2001).
L. A. DeWerd, J. A. Micka, S. M. Holmes, and T. D. Bohm, “Calibration of multiple LDR brachytherapy sources,” Med. Phys. 33, 38043813 (2006).
A. S. Meigooni, S. B. Awan, and K. Dou, “Feasibility of calibrating elongated brachytherapy sources using a well-type ionization chamber,” Med. Phys. 33, 41844189 (2006).
A. S. Meigooni, V. Rachabatthula, S. Awan, and R. Koona, “Treatment planning considerations for prostate implants with the new linear RadioCoil™ 103Pd brachytherapy source,” J. Appl. Clin. Med. Phys. 6, 2336 (2005).
E. A. Bannon, Y. Yang, and M. J. Rivard, “Accuracy of the superposition principle for evaluating dose distributions of elongated and curved 103Pd and 192Ir brachytherapy sources,” Med. Phys. 38, 29572963 (2011).
M. J. Rivard, J. L. Reed, and L. A. DeWerd, “103Pd strings: Monte Carlo assessment of a new approach to brachytherapy source design,” Med. Phys. 41, 011716 (11pp.) (2014).
S. B. Awan, A. S. Meigooni, R. Mokhberiosgouei, and M. Hussain, “Evaluation of TG-43 recommended 2D-anisotropy function for elongated brachytherapy sources,” Med. Phys. 33, 42714279 (2006).
S.-T. Chiu-Tsao, D. R. Schaart, C. G. Soares, and R. Nath, “Dose calculation formalisms and consensus dosimetry parameters for intravascular brachytherapy dosimetry: Recommendations of the AAPM Therapy Physics Committee Task Group No. 149,” Med. Phys. 34, 41264157 (2007).
R. Nath and L. Gray, “Dosimetry studies on prototype 241Am sources for brachytherapy,” Int. J. Radiat. Oncol., Biol., Phys. 13, 897905 (1987).
R. Nath, L. Gray, and C. H. Park, “Dose distributions around cylindrical 241Am sources for a clinical intracavitary applicator,” Med. Phys. 14, 809817 (1987).
R. Nath, D. F. Martin, C. H. Park, S. Rockwell, and J. J. Fischer, “Development of an 241Am applicator for continuous low-dose-rate irradiation of the rat sarcoma BA1112,” Int. J. Radiat. Oncol., Biol., Phys. 13, 18831892 (1987).
R. Nath, C. H. Park, C. R. King, and P. Muench, “A dose computation model for 241Am vaginal applicators including the source-to-source shielding effects,” Med. Phys. 17, 833842 (1990).
R. Nath, R. E. Peschel, C. H. Park, and J. J. Fischer, “Development of an 241Am applicator for intracavitary irradiation of gynecologic cancers,” Int. J. Radiat. Oncol., Biol., Phys. 14, 969978 (1988).
S. M. Loft, I. P. Coles, and R. G. Dale, “The potential of ytterbium 169 in brachytherapy: A brief physical and radiobiological assessment,” Br. J. Radiol. 65, 252257 (1992).
G. Lymperopoulou, P. Papagiannis, L. Sakelliou, E. Georgiou, C. J. Hourdakis, and D. Baltas, “Comparison of radiation shielding requirements for HDR brachytherapy using 169Y b and 192Ir sources,” Med. Phys. 33, 25412547 (2006).
F. Ballester, D. Granero, J. Perez-Calatayud, J. L. M. Venselaar, and M. J. Rivard, “Study of encapsulated 170Tm sources for their potential use in brachytherapy,” Med. Phys. 37, 16291637 (2010).
S. A. Enger, M. D’Amours, and L. Beaulieu, “Modeling a hypothetical 170Tm source for brachytherapy applications,” Med. Phys. 38, 53075310 (2011).
S. A. Enger, D. R. Fisher, and R. T. Flynn, “Gadolinium-153 as a brachytherapy isotope,” Phys. Med. Biol. 58, 957964 (2013).
S. A. Enger, H. Lundqvist, M. D’Amours, and L. Beaulieu, “Exploring 57Co as a new isotope for brachytherapy applications,” Med. Phys. 39, 23422345 (2012).
D. L. Zellmer, M. T. Gillin, and J. F. Wilson, “Microdosimetric single event spectra of ytterbium-169 compared with commonly used brachytherapy sources and teletherapy beams,” Int. J. Radiat. Oncol., Biol., Phys. 23, 627632 (1992).
C. A. Plume, S. E. Daly, A. T. Porter, R. B. Barnett, and J. J. Battista, “The relative biological effectiveness of ytterbium-169 for low dose rate irradiation of cultured mammalian cells,” Int. J. Radiat. Oncol., Biol., Phys. 25, 835840 (1993).
B. R. Thomadsen, P. J. Biggs, L. A. DeWerd, C. W. Coffey II, S.-T. Chiu-Tsao, M. S. Gossman, G. S. Ibbott, M. K. Islam, S. K. Jani, M. T. LaFrance, A. S. Meigooni, M. J. Rivard, V. Sehgal, R. J. Smith, D. J. Keys, M. Benker, and T. W. Rusch, “The 2007 AAPM response to the CRCPD request for recommendations for the CRCPD’s model regulations for electronic brachytherapy,” in Report of AAPM Task Group 152: AAPM Website, 2009.
International Electrotechnical Commission, “Medical electrical equipment–Part 2-8: Particular requirements for basic safety and essential performance of therapeutic x-ray equipment operating in the range 10 kV–1 MV (Edition 2.0),” IEC 60601-2-8 Ed. 2.0 b:2010 (10 November 2010).
International Electrotechnical Commission, “Medical electrical equipment–Part 2-17: Particular requirements for the safety of automatically-controlled brachytherapy afterloading equipment (Edition: 2.0),” IEC 60601-2-17 Ed. 2.0 b:2004 (January 2004).
S. M. Seltzer, M. O’Brien, and M. G. Mitch, “New national air-kerma standard for low-energy electronic brachytherapy sources,” J. Res. Natl. Inst. Stand. Technol. 119, 554574 (2014).
D. J. Eaton, “Quality assurance and independent dosimetry for an intraoperative x-ray device,” Med. Phys. 39, 69086920 (2012).
J. Beatty, P. J. Biggs, K. Gall, P. Okunieff, F. S. Pardo, K. J. Harte, M. J. Dalterio, and A. P. Sliski, “A new miniature x-ray device for interstitial radiosurgery: Dosimetry,” Med. Phys. 23, 5362 (1996).
D. S. Biggs and E. S. Thomson, “Radiation properties of a miniature X-ray device for radiosurgery,” Br. J. Radiol. 69, 544547 (1996).
M. Dinsmore, K. J. Harte, A. P. Sliski, D. O. Smith, P. M. Nomikos, M. J. Dalterio, A. J. Boom, W. F. Leonard, P. E. Oettinger, and J. C. Yanch, “A new miniature x-ray source for interstitial radiosurgery: Device description,” Med. Phys. 23, 4552 (1996).
M. J. Rivard, S. D. Davis, L. A. DeWerd, T. W. Rusch, and S. Axelrod, “Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray source: An electronic brachytherapy source,” Med. Phys. 33, 40204032 (2006).
M. Mille, G. X. Xu, and M. J. Rivard, “Comparison of organ doses for patients undergoing balloon brachytherapy of the breast with HDR 192Ir or electronic sources using Monte Carlo simulations in a heterogeneous human phantom,” Med. Phys. 37, 662671 (2010).
G. Landry, B. Reniers, L. Murrer, L. Lutgens, E. Bloemen-Van Gurp, J.-P. Pignol, B. Keller, L. Beaulieu, and F. Verhaegen, “Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition,” Med. Phys. 37, 51885198 (2010).
L. Beaulieu, Å. Carlsson Tedgren, J.-F. Carrier, S. D. Davis, F. Mourtada, M. J. Rivard, R. M. Thomson, F. Verhaegen, T. A. Wareing, and J. F. Williamson, “Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: Current status and recommendations for clinical implementation,” Med. Phys. 39, 62086236 (2012).
B. Reniers, D. Liu, T. Rusch, and F. Verhaegen, “Calculation of relative biological effectiveness of a low-energy electronic brachytherapy source,” Phys. Med. Biol. 53, 71257135 (2008).
P. S. Teirstein, V. Massullo, S. Jani, J. J. Popma, G. S. Mintz, R. J. Russo, R. A. Schatz, E. M. Guarneri, S. Steuterman, N. B. Morris, M. B. Leon, and P. Tripuraneni, “Catheter-based radiotherapy to inhibit restenosis after coronary stenting,” N. Engl. J. Med. 336, 16971703 (1997).
R. Waksman, Vascular Brachytherapy (Futura Pub. Co., Armonk, NY, 1999).
R. Nath, H. Amols, C. Coffey, D. Duggan, S. Jani, Z. Li, M. Schell, C. Soares, J. Whiting, P. E. Cole, I. Crocker, and R. Schwartz, “Intravascular brachytherapy physics: Report of the AAPM Radiation Therapy Committee Task Group No. 60,” Med. Phys. 26, 119152 (1999).
R. Pötter, E. Van Limbergen, W. Dries, Y. Popowski, W. Coen, C. Fellner, D. Georg, C. Kirisits, P. Levendag, H. Marijnissen, H. Marsiglia, J.-J. Mazeron, B. Pokrajac, P. Scalliet, and V. Tamburini, “Recommendations of the EVA GEC ESTRO Working Group: Prescribing, recording, and reporting in endovascular brachytherapy. Quality assurance, equipment, personnel and education,” Radiother. Oncol. 59, 339360 (2001).
C. S. Schlea and D. H. Stoddard, “Californium isotopes proposed for intracavity and interstitial radiation therapy with neutrons,” Nature 206, 10581059 (1965).
V. Krishnaswamy, “Linear energy transfer distributions for neutrons about a 252Cf point source in tissue,” Radiology 101, 417418 (1971).
Y. Maruyama, “Present status of the treatment of malignant neoplasms by 252Cf brachytherapy,” Nippon Igaku Hoshasen Gakkai Zasshi 44, 483493 (1984).
Y. Maruyama, J. R. Van Nagell, J. Yoneda, P. DePriest, and R. J. Kryscio, “Clinical evaluation of 252Cf neutron intracavitary therapy for primary endometrial adenocarcinoma,” Cancer 71, 39323937 (1993).<3932::AID-CNCR2820711222>3.0.CO;2-A
Y. Maruyama, J. R. Van Nagell, J. Yoneda, E. Donaldson, H. Gallion, R. Higgins, D. Powell, C. Turner, R. Kryscio, and From the Gynecologic Tumor Neutron Theraphy Study Group, “Efficacy of brachytherapy with californium-252 neutrons versus cesium-137 photons for eradication of bulky localized cervical cancer: Single-institution study,” J. Natl. Cancer Inst. 80, 501506 (1988).
Y. Maruyama, J. R. Van Nagell, J. Yoneda, E. S. Donaldson, H. H. Gallion, D. Powell, R. Kryscio, and R. Kryscio, “A review of californium-252 neutron brachytherapy for cervical cancer,” Cancer 68, 11891197 (1991).<1189::AID-CNCR2820680602>3.0.CO;2-F
Y. Maruyama, J. R. Van Nagell, J. Yoneda, H. H. Gallion, P. DePriest, J. M. Feola, and J. Wierzbicki, “Schedule in Cf-252 neutron brachytherapy: Complications after delayed implant therapy for cervical cancer in a phase II trial,” Am. J. Clin. Oncol. 16, 168174 (1993).
R. C. Martin, R. R. Laxson, J. H. Miller, J. G. Wierzbicki, M. J. Rivard, and D. L. Marsh, “Development of high-activity 252Cf sources for neutron brachytherapy,” Appl. Radiat. Isot. 48, 15671570 (1997).
H. Liu, Q. Wang, X. Wan, X. Jia, B. Liu, and C.-K.C. Wang, “Californium-252 neutron brachytherapy combined with external beam radiotherapy for esophageal cancer: Long-term treatment results,” Brachytherapy 13, 514521 (2014).
V. Krishaswamy, “Calculation of the dose distribution about californium-252 needles in tissue,” Radiology 98, 155160 (1971).
V. Krishnaswamy, “Calculated depth dose tablets for californium-252 sources in tissue,” Phys. Med. Biol. 17, 5663 (1972).
L. L. Anderson, “Characteristics of 252Cf neutron sources used for radiotherapy,” Eur. J. Cancer 10, 203205 (1974).
R. D. Colvett, H. H. Rossi, and V. Krishnaswamy, “Dose distributions around a californium-252 needle,” Phys. Med. Biol. 17, 356364 (1972).
J. C. Yanch and R. G. Zamenhof, “Dosimetry of 252Cf sources for neutron radiotherapy with and without augmentation by boron neutron capture therapy,” Radiat. Res. 131, 249256 (1992).
M. J. Rivard, J. G. Wierzbicki, F. Van den Heuvel, R. C. Martin, and R. R. McMahon, “Clinical brachytherapy with neutron emitting 252Cf sources and adherence to AAPM TG-43 dosimetry protocol,” Med. Phys. 26, 8796 (1999).
M. J. Rivard, “Neutron dosimetry for a general 252Cf brachytherapy source,” Med. Phys. 27, 28032815 (2000).
R. J. Berry, “Radiobiological background for use of 252Cf sources–the data available at present,” Br. J. Radiol. 44, 902903 (1971).
R. G. Fairchild, R. M. Drew, and H. L. Atkins, “The relative biological effect of 252Cf radiation on HeLa cells in culture,” Radiology 93, 11871189 (1969).
R. G. Fairchild, R. M. Drew, and H. L. Atkins, “The oxygen enhancement ratio for protracted irradiation with 252Cf,” Radiology 96, 661665 (1970).
E. J. Hall, “Radiobiological measurements with californium 252,” Br. J. Radiol. 43, 263266 (1970).
M. J. Rivard, C. S. Melhus, H. D. Zinkin, L. J. Stapleford, K. E. Evans, D. E. Wazer, and A. Odlozilíková, “A radiobiological model for the relative biological effectiveness of high-dose-rate 252Cf brachytherapy,” Radiat. Res. 164, 319323 (2005).
A. S. Kennedy, C. Nutting, D. Coldwell, J. Gaiser, and C. Drachenberg, “Pathologic response and microdosimetry of 90Y microspheres in man: Review of four explanted whole livers,” Int. J. Radiat. Oncol., Biol., Phys. 60, 15521563 (2004).
C. Breedis and G. Young, “The blood supply of neoplasms in the liver,” Am. J. Pathol. 30, 969977 (1954).
W. A. Dezarn, J. T. Cessna, L. A. DeWerd, W. Feng, V. L. Gates, J. Halama, A. S. Kennedy, S. Nag, M. Sarfaraz, V. Sehgal, R. Selwyn, M. G. Stabin, B. R. Thomadsen, L. E. Williams, and R. Salem, “Recommendations of the American Association of Physicists in Medicine on dosimetry, imaging, and quality assurance procedures for 90Y microsphere brachytherapy in the treatment of hepatic malignancies,” Med. Phys. 38, 48244845 (2011).
R. Salem and K. G. Thurston, “Radioembolization with 90Y ttrium microspheres: A state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 1. Technical and methodologic considerations,” J. Vasc. Interv. Radiol. 17, 12511278 (2006).
R. Salem and K. G. Thurston, “Radioembolization with 90Y ttrium microspheres: A state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 2. Special topics,” J. Vasc. Interv. Radiol. 17, 14251439 (2006).
R. Salem and K. G. Thurston, “Radioembolization with yttrium-90 microspheres: A state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 3. Comprehensive literature review and future direction,” J. Vasc. Interv. Radiol. 17, 15711593 (2006).
Y. K. Dewaraja, S. J. Wilderman, M. Ljungberg, K. F. Koral, K. Zasadny, and M. S. Kaminiski, “Accurate dosimetry in 131I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation,” J. Nucl. Med. 46, 840849 (2005);
K. S. Kolbert, G. Sgouros, A. M. Scott, J. E. Bronstein, R. A. Malane, J. Zhang, H. Kalaigian, S. McNamara, L. Schwartz, and S. M. Larson, “Implementation and evaluation of patient-specific three-dimensional internal dosimetry,” J. Nucl. Med. 38, 301308 (1997);
M. Sarfaraz, A. S. Kennedy, M. A. Lodge, X. A. Li, X. Wu, and C. X. Yu, “Radiation absorbed dose distribution in a patient treated with yttrium-90 microspheres for hepatocellular carcinoma,” Med. Phys. 31, 24492453 (2004).
J. Mikell, O. Vassiliev, W. Erwin, T. Wareing, and F. Mourtada, “Comparing a grid-based Boltzmann solver with Monte Carlo simulation for voxel-based therapeutic radionuclide dose calculations,” Med. Phys. 36, 2772 (2009).
D. Granero, J. Pérez-Calatayud, J. Gimeno, F. Ballester, E. Casal, V. Crispín, and R. van der Laarse, “Design and evaluation of a HDR skin applicator with flattening filter,” Med. Phys. 35, 495503 (2008).
R. K. Fulkerson, J. A. Micka, and L. A. DeWerd, “Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part 1. Electronic brachytherapy source,” Med. Phys. 41, 022103 (21pp.) (2014).
R. K. Fulkerson, J. A. Micka, and L. A. DeWerd, “Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part 2. High dose rate 192Ir sources,” Med. Phys. 41, 022104(16pp.) (2014).
Y. Rong and J. S. Welch, “Surface applicator calibration and commissioning of an electronic brachytherapy system for nonmelanoma skin cancer treatments,” Med. Phys. 37, 55095517 (2010).
S. Richardson, J. Garcia-Ramirez, W. Lu, R. J. Myerson, and P. Parikh, “Design and dosimetric characteristics of a new endocavitary contact radiotherapy system using an electronic brachytherapy source,” Med. Phys. 39, 68386846 (2012).
Y. Yang, C. S. Melhus, S. Sioshansi, and M. J. Rivard, “Treatment planning of a skin-sparing conical breast brachytherapy applicator using conventional brachytherapy software,” Med. Phys. 38, 15191525 (2011).
S. Sioshansi, M. J. Rivard, J. R. Hiatt, A. A. Hurley, Y. Lee, and D. E. Wazer, “Dose modeling of noninvasive image-guided breast brachytherapy in comparison to electron beam boost and three-dimensional conformal accelerated partial breast irradiation,” Int. J. Radiat. Oncol., Biol., Phys. 80, 410416 (2011).
S. Hamid, K. Rocchio, D. Arthur, R. Vera, S. Sha, M. Jolly, S. Cavanaugh, E. Wooten, R. Benda, B. Greenfield, B. Prestidge, S. Ackerman, R. Kuske, C. Quiet, M. Snyder, and D. E. Wazer, “A multi-institutional study of feasibility, implementation, and early clinical results with noninvasive breast brachytherapy for tumor bed boost,” Int. J. Radiat. Oncol., Biol., Phys. 83, 13741380 (2012).
J. Hepel, J. R. Hiatt, S. Sha, K. L. Leonard, T. A. Graves, D. L. Wiggins, D. Mastras, A. Pittier, Brown University Oncology Research Group, and D. E. Wazer, “The rationale, technique, and feasibility of partial breast irradiation using noninvasive image-guided breast brachytherapy,” Brachytherapy 13, 493501 (2014).
G. Lymperopoulou, E. Pantelis, P. Papagiannis, H. Rozaki-Mavrouli, L. Sakelliou, D. Baltas, and P. Karaiskos, “A Monte Carlo dosimetry study of vaginal 192Ir brachytherapy applications with a shielded cylindrical applicator set,” Med. Phys. 31, 30803086 (2004).
E. Poon, J. F. Williamson, T. Vuong, and F. Verhaegen, “Patient-specific Monte Carlo dose calculations for high-dose-rate endorectal brachytherapy with shielded intracavitary applicator,” Int. J. Radiat. Oncol., Biol., Phys. 72, 12591266 (2008).
Q. E. Adams, J. Xu, E. K. Breitbach, X. Li, S. A. Enger, W. R. Rockey, Y. Kim, X. Wu, and R. T. Flynn, “Interstitial rotating shield brachytherapy for prostate cancer,” Med. Phys. 41, 051703 (11pp.) (2014).
M. J. Webster, S. Devic, T. Vuong, D. Yup Han, J. C. Park, D. Scanderbeg, J. Lawson, B. Song, W. T. Watkins, T. Pawlicki, and W. Y. Song, “Dynamic modulated brachytherapy (DMBT) for rectal cancer,” Med. Phys. 40, 011718 (12pp.) (2013).
M. J. Rivard, C. S. Melhus, D. Granero, J. Perez-Calatayud, and F. Ballester, “An approach to using conventional brachytherapy software for clinical treatment planning of complex, Monte Carlo-based brachytherapy dose distributions,” Med. Phys. 36, 19681975 (2009).
F. Perera, F. Chisela, J. Engel, and V. Venkatesan, “Method of localization and implantation of the lumpectomy site for high dose rate brachytherapy after conservative surgery for T1 and T2 breast cancer,” Int. J. Radiat. Oncol., Biol., Phys. 31, 959965 (1995).
I. S. Fentiman, C. Poole, D. Tong, P. J. Winter, H. M. O. Mayles, P. Turner, M. A. Chaudary, and R. D. Rubens, “Iridium implant treatment without external radiotherapy for operable breast cancer: A pilot study,” Eur. J. Cancer 27, 447450 (1991).
G. K. Edmundson, F. A. Vicini, P. Y. Chen, C. Mitchell, and A. A. Martinez, “Dosimetric characteristics of the MammoSite RTS, a new breast brachytherapy applicator,” Int. J. Radiat. Oncol., Biol., Phys. 52, 11321139 (2002).
D. E. Wazer, L. Berle, R. Graham, M. Chung, J. Rothschild, T. Graves, B. Cady, K. Ulin, R. Ruthazer, and T. A. DiPetrillo, “Preliminary results of a phase I/II study of HDR brachytherapy alone for T1/T2 breast cancer,” Int. J. Radiat. Oncol., Biol., Phys. 53, 889897 (2002).
M. Keisch, F. Vicini, R. R. Kuske, M. Hebert, J. White, C. Quiet, D. Arthur, T. Scroggins, and O. Streeter, “Initial clinical experience with the MammoSite breast brachytherapy applicator in women with early-stage breast cancer treated with breast-conserving therapy,” Int. J. Radiat. Oncol., Biol., Phys. 55, 289293 (2003).
A. Dickler, M. Kirk, J. Choo, W. C. Hsi, J. Chu, K. Dowlatshahi, D. Francescatti, and C. Nguyen, “Treatment volume and dose optimization of MammoSite breast brachytherapy applicator,” Int. J. Radiat. Oncol., Biol., Phys. 59, 469474 (2004).
M. C. Kirk, W. C. Hsi, J. C. H. Chu, H. Niu, Z. Hu, D. Bernard, A. Dickler, and C. Nguyen, “Dose perturbation induced by radiographic contrast inside brachytherapy balloon applicators,” Med. Phys. 31, 12191224 (2004).
B. Kassas, F. Mourtada, J. L. Horton, and R. G. Lane, “Contrast effects on dosimetry of a partial breast irradiation system,” Med. Phys. 31, 19761979 (2004).
C.-W. Cheng, R. Mitra, X. A. Li, and I. J. Das, “Dose perturbations due to contrast medium and air in MammoSite® treatment: An experimental and Monte Carlo study,” Med. Phys. 32, 22792287 (2005).
M. Keisch and F. Vicini, “Applying innovations in surgical and radiation oncology to breast conservation therapy,” Breast J. 11(Suppl. 1), S24S29 (2005).
D. E. Wazer, S. Kaufman, L. Cuttino, T. DiPetrillo, and D. W. Arthur, “Accelerated partial breast irradiation: An analysis of variables associated with late toxicity and long-term cosmetic outcome after high-dose-rate interstitial brachytherapy,” Int. J. Radiat. Oncol., Biol., Phys. 64, 489495 (2006).
J. A. Raffi, S. D. Davis, C. G. Hammer, J. A. Micka, K. A. Kunugi, J. E. Musgrove, J. W. Winston, T. J. Ricci-Ott, and L. A. DeWerd, “Determination of exit skin dose for 192Ir intravaitary accelerated partial breast irradiation with thermoluminescent dosimeters,” Med. Phys. 37, 26932702 (2010).
C. Shah, F. Vicini, D. E. Wazer, D. Arthur, and R. R. Patel, “The American Brachytherapy Society consensus statement for accelerated partial breast brachytherapy,” Brachytherapy 12, 267277 (2013).
J. T. Payne, W. H. St. Clair, C. A. Given II, A. B. Young, and A. S. Meigooni, “Double balloon GliaSite® in the management of recurrent glioblastoma,” South. Med. J. 98, 957958 (2005).
L. R. Rogers, J. P. Rock, A. K. Sills, M. A. Vogelbaum, J. H. Suh, T. L. Ellis, V. W. Stieber, A. L. Asher, R. W. Fraser, J. S. Billingsley, P. Lewis, D. Schellingerhout, Brain Metastasis Study Group, and E. G. Shaw, “Results of a phase II trial of the GliaSite Radiation Therapy System for the treatment of newly diagnosed, resected single brain metastases,” J. Neurosurg. 105, 375384 (2006).
J. F. Dempsey, J. A. Williams, J. B. Stubbs, T. J. Patrick, and J. F. Williamson, “Dosimetric properties of a novel brachytherapy balloon applicator for the treatment of malignant brain-tumor resection-cavity margins,” Int. J. Radiat. Oncol., Biol., Phys. 42, 421429 (1998).
J. I. Monroe, J. F. Dempsey, J. A. Dorton, S. Mutic, J. B. Stubbs, J. Markman, and J. F. Williamson, “Experimental validation of dose calculation algorithms for the GliaSite™ RTS, a novel 125I liquid-filled balloon brachytherapy applicator,” Med. Phys. 28, 7385 (2001).
COMS, “Design and methods of a clinical trial for a rare condition: The collaborative ocular melanoma study. COMS Report No. 3,” Control. Clin. Trials 14, 362391 (1993).
A. L. Krintz, W. F. Hanson, G. S. Ibbott, and D. S. Followill, “A reanalysis of the collaborative ocular melanoma study medium tumor trial eye plaque dosimetry,” Int. J. Radiat. Oncol., Biol., Phys. 56, 889898 (2003).
S.-T. Chiu-Tsao, M. A. Astrahan, P. T. Finger, D. S. Followill, A. S. Meigooni, C. S. Melhus, F. Mourtada, M. E. Napolitano, R. Nath, M. J. Rivard, D. W. O. Rogers, and R. M. Thomson, “Dosimetry of 125I and 103Pd COMS eye plaques for intraocular tumors: Report of Task Group 129 by the AAPM and ABS,” Med. Phys. 39, 61616184 (2012).
M. Lesperance, M. Martinov, and R. M. Thomson, “Monte Carlo dosimetry for 103Pd, 125I, and 131Cs ocular brachytherapy with various plaque models using an eye phantom,” Med. Phys. 41, 031706 (14pp.) (2014).
S.-T. Chiu-Tsao, L. Bouley, I. Kanna, A. de la Zerda, and J. H. Kim, “Dose distribution in the eye for 103Pd COMS eye plaque,” Med. Phys. 22, 923 (1995).
M. A. Astrahan, “Improved treatment planning for COMS eye plaques,” Int. J. Radiat. Oncol., Biol., Phys. 61, 12271242 (2005).
P. T. Finger, “Finger’s ‘slotted’ eye plaque for radiation therapy: Treatment of juxtapapillary and circumpapillary intraocular tumours,” Br. J. Ophthalmol. 91, 891894 (2007).
R. M. Thomson, R. E. Taylor, and D. W. O. Rogers, “Monte Carlo dosimetry for 125I and 103Pd eye plaque brachytherapy,” Med. Phys. 35, 55305543 (2008).
K. L. Leonard, N. L. Gagne, J. E. Mignano, J. S. Duker, E. A. Bannon, and M. J. Rivard, “A 17-year retrospective study of institutional results for eye plaque brachytherapy of uveal melanoma using 125I, 103Pd, and 131Cs and historical perspective,” Brachytherapy 10, 331339 (2011).
S. Nag, J. M. Quivey, J. D. Earle, D. Followill, J. Fontanesi, and P. T. Finger, “The American Brachytherapy Society recommendations for brachytherapy of uveal melanomas,” Int. J. Radiat. Oncol., Biol., Phys. 56, 544555 (2003).
M. J. Rivard, S.-T. Chiu-Tsao, P. T. Finger, A. S. Meigooni, C. S. Melhus, F. Mourtada, M. E. Napolitano, D. W. O. Rogers, R. M. Thomson, and R. Nath, “Comparison of dose calculation methods for brachytherapy of intraocular tumors,” Med. Phys. 38, 306316 (2011).
N. L. Gagne, K. L. Leonard, K. E. Huber, J. E. Mignano, J. S. Duker, N. V. Laver, and M. J. Rivard, “BEDVH—A method for evaluating biologically effective dose volume histograms: Application to eye plaque brachytherapy implants,” Med. Phys. 39, 976983 (2012).
P. Aryal, J. A. Molloy, and M. J. Rivard, “Independent dosimetric assessment of the model EP917 episcleral brachytherapy plaque,” Med. Phys. 41, 092102 (11pp.) (2014).
R. G. Dale and B. Jones, “The clinical radiobiology of brachytherapy,” Br. J. Radiol. 71, 465483 (1998).
R. Pötter, C. Haie-Meder, E. Van Limbergen, I. Barillot, M. De Brabandere, J. Dimopoulos, I. Dumas, B. Erickson, S. Lang, A. Nulens, P. Petrow, J. Rownd, and C. Kirisits, “Recommendations from gynaecological (GYN) GEC ESTRO Working Group (ii): Concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology,” Radiother. Oncol. 78, 6677 (2006).
R. Nath, W. S. Bice, W. M. Butler, Z. Chen, A. S. Meigooni, V. Narayana, M. J. Rivard, and Y. Yu, “AAPM recommendations on dose prescription and reporting methods for permanent interstitial brachytherapy for prostate cancer: Report of Task Group 137,” Med. Phys. 36, 53105322 (2009).

Data & Media loading...


Article metrics loading...



Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used in the evaluation of innovative devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining the equivalence of the innovative treatment modality to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of innovative radiotherapy devices or applications is a critical part in which physicists should be actively involved. The physicist’s role, along with physician colleagues, in this process is highlighted for innovative brachytherapy devices and applications and includes evaluation of (1) dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, (2) risks and benefits from a regulatory and safety perspective, and (3) resource assessment and preparedness. Further, it is suggested that any developed calibration methods be traceable to a primary standards dosimetry laboratory (PSDL) such as the National Institute of Standards and Technology in the U.S. or to other PSDLs located elsewhere such as in Europe. Clinical users should follow standards as approved by their country’s regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the Accredited Dosimetry Calibration Laboratories in the U.S. is encouraged before a source is introduced into widespread routine clinical use. The American Association of Physicists in Medicine and the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO) have developed guidelines for the safe and consistent application of brachytherapy using innovative devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. Nuclear Regulatory Commission, U.S. Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, U.S. Food and Drug Administration, European Commission for CE Marking (Conformité Européenne), and institutional review boards and radiation safety committees.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd