Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
E. E. Klein, J. Hanley, J. Bayouth, F. F. Yin, W. Simon, S. Dresser, C. Serago, F. Aguirre, L. Ma, B. Arjomandy, C. Liu, C. Sandin, and T. Holmes, “Task Group 142 report: Quality assurance of medical accelerators,” Med. Phys. 36, 41974212 (2009).
G. J. Kutcher et al., “Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40,” Med. Phys. 21, 581618 (1994).
R. Nath, L. L. Anderson, G. Luxton, K. A. Weaver, J. F. Williamson, and A. S. Meigooni, “Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine,” Med. Phys. 22, 209234 (1995).
B. Fraass, K. Doppke, M. Hunt, G. Kutcher, G. Starkschall, R. Stern, and J. Van Dyke, “American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning,” Med. Phys. 25, 17731829 (1998).
R. Nath, L. L. Anderson, J. A. Meli, A. J. Olch, J. A. Stitt, and J. F. Williamson, “Code of practice for brachytherapy physics: Report of the AAPM Radiation Therapy Committee Task Group No. 56. American Association of Physicists in Medicine,” Med. Phys. 24, 15571598 (1997).
P. R. Almond, P. J. Biggs, B. M. Coursey, W. F. Hanson, M. S. Huq, R. Nath, and D. W. Rogers, “AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams,” Med. Phys. 26, 18471870 (1999).
R. Nath, P. J. Biggs, F. J. Bova, C. C. Ling, J. A. Purdy, J. van de Geijn, and M. S. Weinhous, “AAPM code of practice for radiotherapy accelerators: Report of the AAPM Radiation Therapy Task Group No. 45,” Med. Phys. 21, 10931121 (1994).
Quality and Safety in Radiotherapy: Learning the New Approaches in Task Group 100 and Beyond, edited by B. R. Thomadsen, P. Dunscombe, E. Ford, M. S. Huq, T. Pawlicki, and S. Sutlief (Medical Physics Publishing, Madison, WI, 2013).
E. C. Ford, R. Gaudette, L. Myers, B. Vanderver, L. Engineer, R. Zellars, D. Y. Song, J. Wong, and T. L. DeWeese, “Evaluation of safety in a radiation oncology setting using failure mode and effects analysis,” Int. J. Radiat. Oncol., Biol., Phys. 74, 852858 (2009).
E. C. Ford, K. Smith, S. Terezakis, V. Croog, S. Gollamudi, I. Gage, J. Keck, T. DeWeese, and G. Sibley, “A streamlined failure mode and effects analysis,” Med. Phys. 41, 061709 (6pp.) (2014).
A. Sawant, S. Dieterich, M. Svatos, and P. Keall, “Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems,” Med. Phys. 37, 64666479 (2010).
S. A. Terezakis, P. Pronovost, K. Harris, T. Deweese, and E. Ford, “Safety strategies in an academic radiation oncology department and recommendations for action,” Jt. Comm. J. Qual. Patient Saf. 37, 291299 (2011).
E. C. Ford, K. Smith, K. Harris, and S. Terezakis, “Prevention of a wrong-location misadministration through the use of an intradepartmental incident learning system,” Med. Phys. 39, 69686971 (2012).
S. Broggi, M. C. Cantone, A. Chiara, N. Di Muzio, B. Longobardi, P. Mangili, and I. Veronese, “Application of failure mode and effects analysis (FMEA) to pretreatment phases in tomotherapy,” J. Appl. Clin. Med. Phys. 14, 265277 (2013).
D. S. Denny, D. K. Allen, N. Worthington, and D. Gupta, “The use of failure mode and effect analysis in a radiation oncology setting: The cancer treatment centers of America experience,” J. Healthcare Qual. 36, 1828 (2014).
J. R. Perks, S. Stanic, R. L. Stern, B. Henk, M. S. Nelson, R. D. Harse, M. Mathai, J. A. Purdy, R. K. Valicenti, A. D. Siefkin, and A. M. Chen, “Failure mode and effect analysis for delivery of lung stereotactic body radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. 83, 13241329 (2012).
C. E. Noel, L. Santanam, P. J. Parikh, and S. Mutic, “Process-based quality management for clinical implementation of adaptive radiotherapy,” Med. Phys. 41, 081717 (9pp.) (2014).
M. Scorsetti, C. Signori, P. Lattuada, G. Urso, M. Bignardi, P. Navarria, S. Castiglioni, P. Mancosu, and P. Trucco, “Applying failure mode effects and criticality analysis in radiotherapy: Lessons learned and perspectives of enhancement,” Radiother. Oncol. 94, 367374 (2010).
A. Vlayen, “Evaluation of time- and cost-saving modifications of HFMEA: An experimental approach in radiotherapy,” J. Patient. Saf. 7, 165168 (2011).
M. C. Cantone, M. Ciocca, F. Dionisi, P. Fossati, S. Lorentini, M. Krengli, S. Molinelli, R. Orecchia, M. Schwarz, I. Veronese, and V. Vitolo, “Application of failure mode and effects analysis to treatment planning in scanned proton beam radiotherapy,” Radiat. Oncol. 8:127 (2013).
F. Yang, N. Cao, L. Young, J. Howard, W. Logan, T. Arbuckle, P. Sponseller, T. Korssjoen, J. Meyer, and E. Ford, “Validating FMEA output against incident learning data: A study in stereotactic body radiation therapy,” Med. Phys. 42, 27772785 (2015).
I. Veronese, E. De Martin, A. S. Martinotti, M. L. Fumagalli, C. Vite, I. Redaelli, T. Malatesta, P. Mancosu, G. Beltramo, L. Fariselli, and M. C. Cantone, “Multi-institutional application of failure mode and effects analysis (FMEA) to CyberKnife stereotactic body radiation therapy (SBRT),” Radiat. Oncol. 10:132 (2015).
R. P. Manger, A. B. Paxton, T. Pawlicki, and G. Y. Kim, “Failure mode and effects analysis and fault tree analysis of surface image guided cranial radiosurgery,” Med. Phys. 42, 24492461 (2015).
K. C. Younge, Y. Wang, J. Thompson, J. Giovinazzo, M. Finlay, and R. Sankreacha, “Practical implementation of failure mode and effects analysis for safety and efficiency in stereotactic radiosurgery,” Int. J. Radiat. Oncol., Biol., Phys. 91, 10031008 (2015).
R. T. Jones, L. Handsfield, P. W. Read, D. D. Wilson, R. Van Ausdal, D. J. Schlesinger, J. V. Siebers, and Q. Chen, “Safety and feasibility of STAT RAD: Improvement of a novel rapid tomotherapy-based radiation therapy workflow by failure mode and effects analysis,” Pract. Radiat. Oncol. 5, 106112 (2015).
A. L. Damato, L. J. Lee, M. S. Bhagwat, I. Buzurovic, R. A. Cormack, S. Finucane, J. L. Hansen, D. A. O’Farrell, A. Offiong, U. Randall, S. Friesen, and A. N. Viswanathan, “Redesign of process map to increase efficiency: Reducing procedure time in cervical cancer brachytherapy,” Brachytherapy 14, 471480 (2015).
E. Sayler, H. Eldredge-Hindy, J. Dinome, V. Lockamy, and A. S. Harrison, “Clinical implementation and failure mode and effects analysis of HDR skin brachytherapy using Valencia and Leipzig surface applicators,” Brachytherapy 14, 293299 (2015).
M. Giardina, F. Castiglia, and E. Tomarchio, “Risk assessment of component failure modes and human errors using a new FMECA approach: Application in the safety analysis of HDR brachytherapy,” J. Radiol. Prot. 34, 891914 (2014).
J. Lopez-Tarjuelo, A. Bouche-Babiloni, A. Santos-Serra, V. Morillo-Macias, F. A. Calvo, Y. Kubyshin, and C. Ferrer-Albiach, “Failure mode and effect analysis oriented to risk-reduction interventions in intraoperative electron radiation therapy: The specific impact of patient transportation, automation, and treatment planning availability,” Radiother. Oncol. 113, 283289 (2014).
L. Masini, L. Donis, G. Loi, E. Mones, E. Molina, C. Bolchini, and M. Krengli, “Application of failure mode and effects analysis to intracranial stereotactic radiation surgery by linear accelerator,” Pract. Radiat. Oncol. 4, 392397 (2014).
Joint Commission on Accreditation of Healthcare Organizations, Comprehensive Accreditation Manual for Hospitals: The Official Handbook, Standard LD, 5.2. ed., JCAHO, Oakbrook Terrace, IL, 2001.
Joint Commission Perspectives on Patient Safety, Using FMEA to Assess and Reduce Risk JCAHO, Oakbrook Terrace, IL, 2001.
Joint Commission on Accreditation of Healthcare Organizations, Failure Modes and Effects Analysis: Proactive Risk Reduction, JCAHO, Oakbrook Terrace, IL,2002.
D. Thwaites, P. Scalliet, J. W. Leer, and J. Overgaard, “Quality assurance in radiotherapy. European Society for Therapeutic Radiology and Oncology Advisory Report to the Commission of the European Union for the ‘Europe against cancer programme,’” Radiother. Oncol. 35, 6173 (1995).
European Society for Therapeutic Radiology and Oncology, Practical guidelines for the implementation of a quality system in radiotherapy: Physics for clinical radiotherapy, Booklet No. 4, ESTRO, Brussels,1998.
International Atomic Energy Agency, Quality assurance in radiotherapy, IAEA-TECDOC-1040, IAEA, Vienna,1997.
American College of Medical Physics, Radiation control and quality assurance in radiation oncology: A suggested protocol, ACMP Report Series No. 2, ACMP, Reston, VA,1986.
International Electrotechnical Commission, Medical electrical equipment—Medical electron accelerators: Functional performance characteristics, IEC 976, IEC, Geneva,1989.
International Electrotechnical Commission, Medical electrical equipment—Medical electron accelerators in the range 1 MeV–50 MeV: Guidelines for performance characteristics, IEC 977, IEC, Geneva,1989.
W. Bogdanich, Radiation offers new cures and new ways to do harm, New York Times,2010.
J. F. Williamson and B. R. Thomadsen, “Foreword. Symposium ‘quality assurance of radiation therapy: The challenges of advanced technologies,’” Int. J. Radiat. Oncol., Biol., Phys. 71, S1 (2008).
The Royal College of Radiologists, Towards safer radiotherapy, Report No. BCFO(08)1, London,2008,
World Health Organization, Radiotherapy Risk Profile—Technical Manual, Geneva,2008,
P. Ortiz López, J. M. Cosset, P. Dunscombe, O. Holmberg, J. C. Rosenwald, L. Pinillos Ashton, J. J. Vilaragut Llanes, and S. Vatnitsky, “A report of preventing accidental exposures from new external beam radiation therapy technologies,” ICRP Publication 112 (2009).
ROSIS, Radiation Oncology Safety Information System,2007,
ICRU, “Determination of absorbed dose in a patient irradiated by beams of x- or gamma-rays in radiotherapy procedures,” ICRU Report 74 (International Commission on Radiation Units and Measurement, Bethesda, MD, 1976).
D. F. Herring and D. H. J. Compton, “The degree of precision in the radiation dose delivered in cancer radiotherapy,” Computers in Radiotherapy, Br. J. Radiol. Special Report No. 5, pp. 51–58 (1971).
J. Juran, “Quality,” in Juran’s Quality Control Handbook, edited by F. G. J. M. Juran (McGraw Hill, New York, NY, 1988), p. 2.6.
IEC, International Electrotechnical Commission Standard 60601-1, Medical electrical equipment, Part 1—General requirements for basic safety and essential performance, IEC, Geneva,2005.
E. C. Ford, L. Fong de Los Santos, T. Pawlicki, S. Sutlief, and P. Dunscombe, “Consensus recommendations for incident learning database structures in radiation oncology,” Med. Phys. 39, 72727290 (2012).
P. H. Halvorsen, I. J. Das, M. Fraser, D. J. Freedman, R. E. Rice III, G. S. Ibbott, E. I. Parsai, T. T. Robin, Jr., and B. R. Thomadsen, “AAPM Task Group 103 report on peer review in clinical radiation oncology physics,” J. Appl. Clin. Med. Phys. 6, 5064 (2005).
VA National Center for Patient Safety,
S. Mutic and S. Brame, in Error and Near Miss Reporting: A View from North America, edited by T. Pawlicki, P. Dunscombe, A. J. Mundt, and P. Scalliet (Taylor & Francis, New York, NY, 2010), pp. 8593.
A Reference Guide For Learning From Incidents In Radiation Treatment (HTA Initiative Series #22),
RO-ILS: Radiation Oncology Incident Learning System,
Center for the assesment of Radiological Sciences (CARS), Madison, WI,
International Atomic Energy Agency (IAEA), Case studies in the application of probabilistic safety assessment techniques to radiation sources, Final report of a Coordinated Research Project, 2001-2003IAEA-TECDOC-1494, IAEA, Vienna,2006.
International Atomic Energy Agency (IAEA), Safety Standards for Protecting People and the Environment, Safety of Radiation Generators and Sealed Radioactive Sources, Safety Guide No. RS-G-1.10, IAEA, Vienna,2006.
International Atomic Energy Agency, International Atomic Energy Agency, Safety series: Lessons learned from accidental exposures in radiotherapy, 17, IAEA, Vienna, Austria.
M. E. Pate-Cornell, L. M. Lakats, D. M. Murphy, and D. M. Gaba, “Anesthesia patient risk: A quantitative approach to organizational factors and risk management options,” Risk Anal. 17, 511523 (1997).
N. Sheridan-Leos, L. Schulmeister, and S. Hartranft, “Failure mode and effect analysis: A technique to prevent chemotherapy errors,” Clin. J. Oncol. Nurs. 10, 393398 (2006).
B. Duwe, B. D. Fuchs, and J. Hansen-Flaschen, “Failure mode and effects analysis application to critical care medicine,” Crit. Care Clin. 21, 2130 (2005).
T. B. Wetterneck, K. A. Skibinski, T. L. Roberts, S. M. Kleppin, M. E. Schroeder, M. Enloe, S. S. Rough, A. S. Hundt, and P. Carayon, “Using failure mode and effects analysis to plan implementation of smart i.v. pump technology,” Am. J. Health-Syst. Pharm. 63, 15281538 (2006).
J. R. Palta, M. S. Huq, and B. Thomadsen, “Application of risk analysis methods to IMRT quality management,” in Quality and safety in radiotherapy, Learning the new approaches in Task Group 100 and beyond, Medical Physics Monograph no. 36, edited by B. Thomadsen, P. Dunscombe, E. Ford, S. Huq, T. Pawlicki, and S. Sutlief (2013), pp. 312349.
International Atomic Energy Agency (IAEA), Organization for Economic Co-operation and Develeopment—Nuclear Energy Agency, INES: The International Nuclear and Radiological Event Scale User’s Manual, 2008 Edition IAEA, Vienna, 2013.
Automotive Industry Action Group, FMEA Manual, 4th ed. (AIAG, Southfield, MI, 2008).
Institute for Safe Medical Practices (ISMP), Medication error prevention “toolbox,” in Medication Safety Alert,1999,
E. U. Ekaette, R. C. Lee, D. L. Cooke, K. L. Kelly, and P. B. Dunscombe, “Risk analysis in radiation treatment: Application of a new taxonomic structure,” Radiother. Oncol. 80, 282287 (2006).
K. M. Langen, N. Papanikolaou, J. Balog, R. Crilly, D. Followill, S. M. Goddu, W. Grant III, G. Olivera, C. R. Ramsey, and C. Shi, “QA for helical tomotherapy: Report of the AAPM Task Group 148,” Med. Phys. 37, 48174853 (2010).
S. Dieterich, C. Cavedon, C. F. Chuang, A. B. Cohen, J. A. Garrett, C. L. Lee, J. R. Lowenstein, M. F. d’Souza, D. D. Taylor, Jr., X. Wu, and C. Yu, “Report of AAPM TG 135: Quality assurance for robotic radiosurgery,” Med. Phys. 38, 29142936 (2011).
S. H. Benedict, K. M. Yenice, D. Followill, J. M. Galvin, W. Hinson, B. Kavanagh, P. Keall, M. Lovelock, S. Meeks, L. Papiez, T. Purdie, R. Sadagopan, M. C. Schell, B. Salter, D. J. Schlesinger, A. S. Shiu, T. Solberg, D. Y. Song, V. Stieber, R. Timmerman, W. A. Tome, D. Verellen, L. Wang, and F. F. Yin, “Stereotactic body radiation therapy: The report of AAPM Task Group 101,” Med. Phys. 37, 40784101 (2010).
J. M. Moran, M. Dempsey, A. Eisbruch, B. A. Fraass, J. M. Galvin, G. S. Ibbott, and L. B. Marks, “Safety considerations for IMRT: Executive summary,” Med. Phys. 38, 50675072 (2011).
T. D. Soleberg, J. M. Balter, S. H. Benedict, B. A. Fraass, B. Kavanagh, C. Miyamoto, T. Pawlicki, L. Potters, and Y. Yamada, “Quality and safety considerations in stereotactic radiosurgery and stereotactic body radiation therapy: Executive summary,” Pract. Radiat. Oncol. 2, 29 (2012).
D. A. Jaffray, K. M. Langen, G. Mageras, L. A. Dawson, D. Yan, R. Adams, A. J. Mundt, and B. A. Fraass, “Safety considerations for IGRT: Executive summary,” Pract. Radiat. Oncol. 3, 167170 (2013).
B. R. Thomadsen, B. A. Erickson, P. J. Eifel, I. Chow Hsu, R. R. Patel, D. G. Petereit, B. A. Fraass, and M. J. Rivard, “A review of safety, quality management, and practice guidelines for high-dose-rate brachytherapy: Executive summary,” Pract. Radiat. Oncol. 4, 6570 (2014).
L. B. Marks, R. A. Adams, T. Pawlicki, A. L. Blumberg, D. Hoopes, M. D. Brundage, and B. A. Fraass, “Enhancing the role of case-oriented peer review to improve quality and safety in radiation oncology: Executive summary,” Pract. Radiat. Oncol. 3, 149156 (2013).
L. E. Fong de Los Santos, S. Evans, E. C. Ford, J. E. Gaiser, S. E. Hayden, K. E. Huffman, J. L. Johnson, J. G. Mechalakos, R. L. Stern, S. Terezakis, B. R. Thomadsen, P. J. Pronovost, and L. A. Fairobent, “Medical Physics Practice Guideline 4.a: Development, implementation, use and maintenance of safety checklists,” J. Appl. Clin. Med. Phys. 16, 3759 (2015).
Safety is No Accident: A Framework for Quality Radiation Oncology and Care, ASTRO, Fairfax, VA,2012,
L. B. Marks, C. M. Rose, J. A. Hayman, and T. R. Williams, “The need for physician leadership in creating a culture of safety,” Int. J. Radiat. Oncol., Biol., Phys. 79, 12871289 (2011).
J. F. Williamson, P. B. Dunscombe, M. B. Sharpe, B. R. Thomadsen, J. A. Purdy, and J. A. Deye, “Quality assurance needs for modern image-based radiotherapy: Recommendations from 2007 interorganizational symposium on ‘Quality assurance of radiation therapy: Challenges of advanced technology,’” Int. J. Radiat. Oncol., Biol., Phys. 71, S2S12 (2008).
H. D. Kubo, G. P. Glasgow, T. D. Pethel, B. R. Thomadsen, and J. F. Williamson, “High dose-rate brachytherapy treatment delivery: Report of the AAPM Radiation Therapy Committee Task Group No. 59,” Med. Phys. 25, 375403 (1998).
T. Pawlicki, P. B. Dunscombe, A. J. Mundt, and P. Scalliet, Quality and Safety in Radiotherapy (Taylor & Francis, New York, NY, 2010).
J. A. Purdy et al., “Medical accelerator safety considerations: Report of AAPM Radiation Therapy Committee Task Group No. 35,” Med. Phys. 20, 12611275 (1993).
G. S. Mageras, G. J. Kutcher, S. A. Leibel, M. J. Zelefsky, E. Melian, R. Mohan, and Z. Fuks, “A method of incorporating organ motion uncertainties into three-dimensional conformal treatment plans,” Int. J. Radiat. Oncol., Biol., Phys. 35, 333342 (1996).
P. B. Dunscombe, S. Iftody, N. Ploquin, E. U. Ekaette, and R. C. Lee, “The equivalent uniform dose as a severity metric for radiation treatment incidents,” Radiother. Oncol. 84, 6466 (2007).
A. Rangel, N. Ploquin, I. Kay, and P. Dunscombe, “Towards an objective evaluation of tolerances for beam modeling in a treatment planning system,” Phys. Med. Biol. 52, 60116025 (2007).
D. A. Low, J. M. Moran, J. F. Dempsey, L. Dong, and M. Oldham, “Dosimetry tools and techniques for IMRT,” Med. Phys. 38, 13131338 (2011).
S. L. Mahan, D. J. Chase, and C. R. Ramsey, “Technical Note: Output and energy fluctuations of the tomotherapy Hi-Art helical tomotherapy system,” Med. Phys. 31, 21192120 (2004).
T. Pawlicki, S. Yoo, L. E. Court, S. K. McMillan, R. K. Rice, J. D. Russell, J. M. Pacyniak, M. K. Woo, P. S. Basran, J. Shoales, and A. L. Boyer, “Moving from IMRT QA measurements toward independent computer calculations using control charts,” Radiother. Oncol. 89, 330337 (2008).
T. Pawlicki, M. Whitaker, and A. L. Boyer, “Statistical process control for radiotherapy quality assurance,” Med. Phys. 32, 27772786 (2005).
B. Thomadsen, S. W. Lin, P. Laemmrich, T. Waller, A. Cheng, B. Caldwell, R. Rankin, and J. Stitt, “Analysis of treatment delivery errors in brachytherapy using formal risk analysis techniques,” Int. J. Radiat. Oncol., Biol., Phys. 57, 14921508 (2003).
P. Ortiz López, “Tools for risk assessment in radiation therapy,” Ann. ICRP 41, 197207 (2012).
B. G. Clark, R. J. Brown, J. L. Ploquin, A. L. Kind, and L. Grimard, “The management of radiation treatment error through incident learning,” Radiother. Oncol. 95, 344349 (2010).
T. K. Yeung, K. Bortolotto, S. Cosby, M. Hoar, and E. Lederer, “Quality assurance in radiotherapy: Evaluation of errors and incidents recorded over a 10 year period,” Radiother. Oncol. 74, 283291 (2005).
N. Barthelemy-Brichant, J. Sabatier, W. Dewe, A. Albert, and J. M. Deneufbourg, “Evaluation of frequency and type of errors detected by a computerized record and verify system during radiation treatment,” Radiother. Oncol. 53, 149154 (1999).
B. A. Fraass, K. L. Lash, G. M. Matrone, S. K. Volkman, D. L. McShan, M. L. Kessler, and A. S. Lichter, “The impact of treatment complexity and computer-control delivery technology on treatment delivery errors,” Int. J. Radiat. Oncol., Biol., Phys. 42, 651659 (1998).
E. Ekaette, R. C. Lee, D. L. Cooke, S. Iftody, and P. Craighead, “Probabilistic fault tree analysis of a radiation treatment system,” Risk Anal. 27, 13951410 (2007).
P. B. Dunscombe, E. U. Ekaette, R. C. Lee, and D. L. Cooke, “Taxonometric applications in radiotherapy incident analysis,” Int. J. Radiat. Oncol., Biol., Phys. 71, S200S203 (2008).
T. J. Logan, “Error prevention as developed in airlines,” Int. J. Radiat. Oncol., Biol., Phys. 71, S178S181 (2008).
M. Ciocca, M. C. Cantone, I. Veronese, F. Cattani, G. Pedroli, S. Molinelli, V. Vitolo, and R. Orecchia, “Application of failure mode and effects analysis to intraoperative radiation therapy using mobile electron linear accelerators,” Int. J. Radiat. Oncol., Biol., Phys. 82, e305e311 (2012).
P. Novak, E. G. Moros, W. L. Straube, and R. J. Myerson, “Treatment delivery software for a new clinical grade ultrasound system for thermoradiotherapy,” Med. Phys. 32, 32463256 (2005).
E. W. Israelski and W. H. Muto, “Human factors risk management as a way to improve medical device safety: A case study of the therac 25 radiation therapy system,” Jt. Comm. J. Qual. Patient Saf. 30, 689695 (2004).
B. G. Clark, R. J. Brown, J. Ploquin, and P. Dunscombe, “Patient safety improvements in radiation treatment through 5 years of incident learning,” Pract. Radiat. Oncol. 3, 157163 (2013).
NPSF, Patient Safety Dictionary,
N. D’Souza, L. Holden, S. Robson, K. Mah, L. Di Prospero, C. S. Wong, E. Chow, and J. Spayne, “Modern palliative radiation treatment: Do complexity and workload contribute to medical errors?,” Int. J. Radiat. Oncol., Biol., Phys. 84, e43e48 (2012).
D. N. Margalit, Y. H. Chen, P. J. Catalano, K. Heckman, T. Vivenzio, K. Nissen, L. D. Wolfsberger, R. A. Cormack, P. Mauch, and A. K. Ng, “Technological advancements and error rates in radiation therapy delivery,” Int. J. Radiat. Oncol., Biol., Phys. 81, e673e679 (2011).
A. Arnold, G. P. Delaney, L. Cassapi, and M. Barton, “The use of categorized time-trend reporting of radiation oncology incidents: A proactive analytical approach to improving quality and safety over time,” Int. J. Radiat. Oncol., Biol., Phys. 78, 15481554 (2010).
J. P. Bissonnette and G. Medlam, “Trend analysis of radiation therapy incidents over seven years,” Radiother. Oncol. 96, 139144 (2010).
G. Huang, G. Medlam, J. Lee, S. Billingsley, J. P. Bissonnette, J. Ringash, G. Kane, and D. C. Hodgson, “Error in the delivery of radiation therapy: Results of a quality assurance review,” Int. J. Radiat. Oncol., Biol., Phys. 61, 15901595 (2005).
S. Mutic, R. S. Brame, S. Oddiraju, P. Parikh, M. A. Westfall, M. L. Hopkins, A. D. Medina, J. C. Danieley, J. M. Michalski, I. M. El Naqa, D. A. Low, and B. Wu, “Event (error and near-miss) reporting and learning system for process improvement in radiation oncology,” Med. Phys. 37, 50275036 (2010).
L. B. Marks, K. L. Light, J. L. Hubbs, D. L. Georgas, E. L. Jones, M. C. Wright, C. G. Willett, and F. F. Yin, “The impact of advanced technologies on treatment deviations in radiation treatment delivery,” Int. J. Radiat. Oncol., Biol., Phys. 69, 15791586 (2007).
R. M. Macklis, T. Meier, and M. S. Weinhous, “Error rates in clinical radiotherapy,” J. Clin. Oncol. 16, 551556 (1998).
R. Calandrino, G. M. Cattaneo, C. Fiorino, B. Longobardi, P. Mangili, and P. Signorotto, “Detection of systematic errors in external radiotherapy before treatment delivery,” Radiother. Oncol. 45, 271274 (1997).
Abt Study of Medical Physicist Work Values for Radiation Oncology Physics Services: Round II (Final Report) College Park, MD, 2003,
E. E. Klein, “A grid to facilitate physics staffing justification,” J. Appl. Clin. Med. Phys. 11, 263273 (2010).
American College of Radiology (ACR), Radiation Oncology Accreditation Program Requirements, ACR, Reston, VA,2012,
B. S. Chera, M. Jackson, L. M. Mazur, R. Adams, S. Chang, K. Deschesne, T. Cullip, and L. B. Marks, “Improving quality of patient care by improving daily practice in radiation oncology,” Sem. Radiat. Oncol. 22, 7785 (2012).
W. R. Lee, M. Roach III, J. Michalski, B. Moran, and D. Beyer, “Interobserver variability leads to significant differences in quantifiers of prostate implant adequacy,” Int. J. Radiat. Oncol., Biol., Phys. 54, 457461 (2002).
V. Gregoire, P. Levendag, K. K. Ang, J. Bernier, M. Braaksma, V. Budach, C. Chao, E. Coche, J. S. Cooper, G. Cosnard, A. Eisbruch, S. El-Sayed, B. Emami, C. Grau, M. Hamoir, N. Lee, P. Maingon, K. Muller, and H. Reychler, “CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC, RTOG consensus guidelines,” Radiother. Oncol. 69, 227236 (2003).
M. R. Kaus, K. K. Brock, V. Pekar, L. A. Dawson, A. M. Nichol, and D. A. Jaffray, “Assessment of a model-based deformable image registration approach for radiation therapy planning,” Int. J. Radiat. Oncol., Biol., Phys. 68, 572580 (2007).
M. Kapanen, M. Tenhunen, R. Parkkinen, P. Sipila, and H. Jarvinen, “The influence of output measurement time interval and tolerance on treatment dose deviation in photon external beam radiotherapy,” Phys. Med. Biol. 51, 48574867 (2006).
C. Constantinou and E. S. Sternick, “Reduction of the ‘horns’ observed on the beam profiles of a 6-MV linear accelerator,” Med. Phys. 11, 840842 (1984).
A. Rangel and P. Dunscombe, “Tolerances on MLC leaf position accuracy for IMRT delivery with a dynamic MLC,” Med. Phys. 36, 33043309 (2009).
J. E. Bayouth, “Siemens multileaf collimator characterization and quality assurance approaches for intensity-modulated radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 71, S93S97 (2008).
C. Liu, T. A. Simon, C. Fox, J. Li, and J. R. Palta, “Multileaf collimator characteristics and reliability requirements for IMRT Elekta system,” Int. J. Radiat. Oncol., Biol., Phys. 71, S89S92 (2008).
T. LoSasso, “IMRT delivery system QA,” in Intensity Modulated Radiation Therapy: The State of the Art, Medical Physics Monograph Vol. 29, edited by J. Palta and T. R. Mackie (Medical Physics Publishing, Madison, WI, 2001), pp. 561591.
T. LoSasso, C.-S. Chui, and C. C. Ling, “Comprehensive quality assurance for the delivery of intensity modulated radiotherapy with a multileaf collimator used in the dynamic mode,” Med. Phys. 28, 22092219 (2001).
G. Mu, E. Ludlum, and P. Xia, “Impact of MLC leaf position errors on simple and complex IMRT plans for head and neck cancer,” Phys. Med. Biol. 53, 7788 (2008).
P. J. Keall, G. S. Mageras, J. M. Balter, R. S. Emery, K. M. Forster, S. B. Jiang, J. M. Kapatoes, D. A. Low, M. J. Murphy, B. R. Murray, C. R. Ramsey, M. B. Van Herk, S. S. Vedam, J. W. Wong, and E. Yorke, “The management of respiratory motion in Radiation Oncology report of AAPM Task Group 76,” Med. Phys. 33, 38743900 (2006).
W. Luo, J. Li, R. A. Price, Jr., L. Chen, J. Yang, J. Fan, Z. Chen, S. McNeeley, X. Xu, and C. M. Ma, “Monte Carlo based IMRT dose verification using MLC log files and R/V outputs,” Med. Phys. 33, 25572564 (2006).
D. W. Litzenberg, J. M. Moran, and B. A. Fraass, “Verification of dynamic and segmental IMRT delivery by dynamic log file analysis,” J. Appl. Clin. Med. Phys. 3, 6372 (2002).
R. Prabhakar, J. Cramb, and T. Kron, “A feasibility study of using couch-based real time dosimetric device in external beam radiotherapy,” Med. Phys. 38, 65396552 (2011).
A. Mans, M. Wendling, L. N. Mcdermott, J. J. Sonke, R. Tielenburg, R. Vijlbrief, B. Mijnheer, M. van Herk, and J. C. Stroom, “Catching errors with in vivo EPID dosimetry,” Med. Phys. 37, 26382644 (2010).
A. M. Stell, J. G. Li, O. A. Zeidan, and J. F. Dempsey, “An extensive log-file analysis of step-and-shoot intensity modulated radiation therapy segment delivery errors,” Med. Phys. 31, 15931602 (2004).
M. Sabet, P. Rowshanfarzad, P. Vial, F. W. Menk, and P. B. Greer, “Transit dosimetry in IMRT with an a-Si EPID in direct detection configuration,” Phys. Med. Biol. 57, N295N306 (2012).
European Society for Therapeutic Radiology and Oncology, Guidelines for the Verification of IMRT: Booklet 9, ESTRO, Brussels,2008.
A. C. Hartford, M. G. Palisca, T. J. Eichler, D. C. Beyer, V. R. Devineni, G. S. Ibbott, B. Kavanagh, J. S. Kent, S. A. Rosenthal, C. J. Schultz, P. Tripuraneni, and L. E. Gaspar, “American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) practice guidelines for intensity-modulated radiation therapy (IMRT),” Int. J. Radiat. Oncol., Biol., Phys. 73, 914 (2009).
American College of Radiology, ACR—ASTRO Practice Guideline for Intensity Modulated Radiation Therapy (IMRT), ACR,2011
G. A. Ezzell, J. M. Galvin, D. Low, J. R. Palta, I. Rosen, M. B. Sharpe, P. Xia, Y. Xiao, L. Xing, C. X. Yu, IMRT Subcommittee, and AAPM Radiation Therapy Committee, “Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee,” Med. Phys. 30, 20892115 (2003).
G. K. Svensson, N. A. Baily, R. Loevinger, and R. J. Morton, Physical Aspects of Quality Assurance in Radiation Therapy (American Association of Physicists in Medicine, American Institute of Physics, New York, NY, 1984).
See supplementary material at for Appendixes C1–C3 and D–G.[Supplementary Material]

Data & Media loading...


Article metrics loading...



The increasing complexity of modern radiation therapy planning and delivery challenges traditional prescriptive quality management (QM) methods, such as many of those included in guidelines published by organizations such as the AAPM, ASTRO, ACR, ESTRO, and IAEA. These prescriptive guidelines have traditionally focused on monitoring all aspects of the functional performance of radiotherapy (RT) equipment by comparing parameters against tolerances set at strict but achievable values. Many errors that occur in radiation oncology are not due to failures in devices and software; rather they are failures in workflow and process. A systematic understanding of the likelihood and clinical impact of possible failures throughout a course of radiotherapy is needed to direct limit QM resources efficiently to produce maximum safety and quality of patient care. Task Group 100 of the AAPM has taken a broad view of these issues and has developed a framework for designing QM activities, based on estimates of the probability of identified failures and their clinical outcome through the RT planning and delivery process. The Task Group has chosen a specific radiotherapy process required for “intensity modulated radiation therapy (IMRT)” as a case study. The goal of this work is to apply modern risk-based analysis techniques to this complex RT process in order to demonstrate to the RT community that such techniques may help identify more effective and efficient ways to enhance the safety and quality of our treatment processes. The task group generated by consensus an example quality management program strategy for the IMRT process performed at the institution of one of the authors. This report describes the methodology and nomenclature developed, presents the process maps, FMEAs, fault trees, and QM programs developed, and makes suggestions on how this information could be used in the clinic. The development and implementation of risk-assessment techniques will make radiation therapy safer and more efficient.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd