Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
D. A. Palma, S. Senan, K. Tsujino, R. B. Barriger, R. Rengan, M. Moreno, J. D. Bradley, T. H. Kim, S. Ramella, L. B. Marks, L. De Petris, L. Stitt, and G. Rodrigues, “Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: An international individual patient data meta-analysis,” Int. J. Radiat. Oncol., Biol., Phys. 85, 444450 (2013).
Z. Q. Jiang, K. Yang, R. Komaki, X. Wei, S. L. Tucker, Y. Zhuang, M. K. Martel, S. Vedam, P. Balter, G. Zhu, D. Gomez, C. Lu, R. Mohan, J. D. Cox, and Z. Liao, “Long-term clinical outcome of intensity-modulated radiotherapy for inoperable non-small cell lung cancer: The MD Anderson experience,” Int. J. Radiat. Oncol., Biol., Phys. 83, 332339 (2012).
Y. Seppenwoolde, K. De Jaeger, L. J. Boersma, J. S. Belderbos, and J. V. Lebesque, “Regional differences in lung radiosensitivity after radiotherapy for non-small-cell lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. 60, 748758 (2004).
Y. Vinogradskiy, R. Castillo, E. Castillo, S. L. Tucker, Z. Liao, T. Guerrero, and M. K. Martel, “Use of 4-dimensional computed tomography-based ventilation imaging to correlate lung dose and function with clinical outcomes,” Int. J. Radiat. Oncol., Biol., Phys. 86, 366371 (2013).
K. P. Farr, J. F. Kallehauge, D. S. Moller, A. A. Khalil, S. Kramer, H. Bluhme, A. Morsing, and C. Grau, “Inclusion of functional information from perfusion SPECT improves predictive value of dose-volume parameters in lung toxicity outcome after radiotherapy for non-small cell lung cancer: A prospective study,” Radiother. Oncol. 117, 916 (2015).
R. P. Abratt, P. A. Willcox, and J. A. Smith, “Lung cancer in patients with borderline lung functions–zonal lung perfusion scans at presentation and lung function after high dose irradiation,” Radiother. Oncol. 19, 317322 (1990).
I. W. Gayed, J. Chang, E. E. Kim, R. Nunez, B. Chasen, H. H. Liu, K. Kobayashi, Y. Zhang, Z. Liao, S. Gohar, M. Jeter, L. Henderson, W. Erwin, and R. Komaki, “Lung perfusion imaging can risk stratify lung cancer patients for the development of pulmonary complications after chemoradiation,” J. Thorac. Oncol. 3, 858864 (2008).
J. Petersson, A. Sanchez-Crespo, S. A. Larsson, and M. Mure, “Physiological imaging of the lung: Single-photon-emission computed tomography (SPECT),” J. Appl. Physiol. 102, 468476 (2007).
H. Hatabu, J. Gaa, D. Kim, W. Li, P. V. Prasad, and R. R. Edelman, “Pulmonary perfusion: Qualitative assessment with dynamic contrast-enhanced MRI using ultra-short TE and inversion recovery turbo FLASH,” Magn. Reson. Med. 36, 503508 (1996).
F. Pontana, J. B. Faivre, M. Remy-Jardin, T. Flohr, B. Schmidt, N. Tacelli, V. Pansini, and J. Remy, “Lung perfusion with dual-energy multidetector-row CT (MDCT): Feasibility for the evaluation of acute pulmonary embolism in 117 consecutive patients,” Acad. Radiol. 15, 14941504 (2008).
S. Senan, D. De Ruysscher, P. Giraud, R. Mirimanoff, V. Budach, and Radiotherapy Group of the European Organization for Research and Treatment of Cancer (EORTC), “Literature-based recommendations for treatment planning and execution in high-dose radiotherapy for lung cancer,” Radiother. Oncol. 71, 139146 (2004).
J. E. Wildberger, E. Klotz, H. Ditt, E. Spuntrup, A. H. Mahnken, and R. W. Gunther, “Multislice computed tomography perfusion imaging for visualization of acute pulmonary embolism: Animal experience,” Eur. Radiol. 15, 13781386 (2005).
S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P. Pluim, “ elastix: a toolbox for intensity-based medical image registration,” IEEE Trans. Med. Imaging 29, 196205 (2010).
C. T. Metz, S. Klein, M. Schaap, T. van Walsum, and W. J. Niessen, “Nonrigid registration of dynamic medical imaging data using nD + t B-splines and a groupwise optimization approach,” Med. Image Anal. 15, 238249 (2011).
D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: Application to breast MR images,” IEEE Trans. Med. Imaging 18, 712721 (1999).
M. Staring, S. Klein, J. H. C. Reiber, W. J. Niessen, and B. C. Stoel, “Pulmonary image registration with elastix using a standard intensity-based algorithm,” in Proceedings of Medical Image Analysis for the Clinic—A Grand Challenge, MICCAI (Beijing, China, 2010), Vol. 73–79.
K. Murphy, B. van Ginneken, J. M. Reinhardt, S. Kabus, K. Ding, X. Deng, K. Cao, K. Du, G. E. Christensen, V. Garcia, T. Vercauteren, N. Ayache, O. Commowick, G. Malandain, B. Glocker, N. Paragios, N. Navab, V. Gorbunova, J. Sporring, M. de Bruijne, X. Han, M. P. Heinrich, J. A. Schnabel, M. Jenkinson, C. Lorenz, M. Modat, J. R. McClelland, S. Ourselin, S. E. Muenzing, M. A. Viergever, D. De Nigris, D. L. Collins, T. Arbel, M. Peroni, R. Li, G. C. Sharp, A. Schmidt-Richberg, J. Ehrhardt, R. Werner, D. Smeets, D. Loeckx, G. Song, N. Tustison, B. Avants, J. C. Gee, M. Staring, S. Klein, B. C. Stoel, M. Urschler, M. Werlberger, J. Vandemeulebroucke, S. Rit, D. Sarrut, and J. P. Pluim, “Evaluation of registration methods on thoracic CT: The EMPIRE10 challenge,” IEEE Trans. Med. Imaging 30, 19011920 (2011).
K. Murphy, B. van Ginneken, S. Klein, M. Staring, B. J. de Hoop, M. A. Viergever, and J. P. Pluim, “Semi-automatic construction of reference standards for evaluation of image registration,” Med. Image Anal. 15, 7184 (2011).
Y. S. Tzeng, K. Lutchen, and M. Albert, “The difference in ventilation heterogeneity between asthmatic and healthy subjects quantified using hyperpolarized 3He MRI,” J. Appl. Physiol. 106, 813822 (2009).
M. F. Vidal Melo, T. Winkler, R. S. Harris, G. Musch, R. E. Greene, and J. G. Venegas, “Spatial heterogeneity of lung perfusion assessed with 13NPET as a vascular biomarker in chronic obstructive pulmonary disease,” J. Nucl. Med. 51, 5765 (2010).
M. Mure, K. B. Domino, S. G. Lindahl, M. P. Hlastala, W. A. Altemeier, and R. W. Glenny, “Regional ventilation-perfusion distribution is more uniform in the prone position,” J. Appl. Physiol. 88, 10761083 (2000).
A. C. Henderson, R. C. Sa, R. J. Theilmann, R. B. Buxton, G. K. Prisk, and S. R. Hopkins, “The gravitational distribution of ventilation-perfusion ratio is more uniform in prone than supine posture in the normal human lung,” J. Appl. Physiol. 115, 313324 (2013).
J. Petersson, M. Rohdin, A. Sanchez-Crespo, S. Nyren, H. Jacobsson, S. A. Larsson, S. G. Lindahl, D. Linnarsson, B. Neradilek, N. L. Polissar, R. W. Glenny, and M. Mure, “Posture primarily affects lung tissue distribution with minor effect on blood flow and ventilation,” Respir. Physiol. Neurobiol. 156, 293303 (2007).
G. Bauman, U. Lutzen, M. Ullrich, T. Gaass, J. Dinkel, G. Elke, P. Meybohm, I. Frerichs, B. Hoffmann, J. Borggrefe, H. C. Knuth, J. Schupp, H. Prum, M. Eichinger, M. Puderbach, J. Biederer, and C. Hintze, “Pulmonary functional imaging: Qualitative comparison of Fourier decomposition MR imaging with SPECT/CT in porcine lung,” Radiology 260, 551559 (2011).
B. A. Moffat, T. L. Chenevert, T. S. Lawrence, C. R. Meyer, T. D. Johnson, Q. Dong, C. Tsien, S. Mukherji, D. J. Quint, S. S. Gebarski, P. L. Robertson, L. R. Junck, A. Rehemtulla, and B. D. Ross, “Functional diffusion map: A noninvasive MRI biomarker for early stratification of clinical brain tumor response,” Proc. Natl. Acad. Sci. U. S. A. 102, 55245529 (2005).
C. J. Galban, S. K. Mukherji, T. L. Chenevert, C. R. Meyer, D. A. Hamstra, P. H. Bland, T. D. Johnson, B. A. Moffat, A. Rehemtulla, A. Eisbruch, and B. D. Ross, “A feasibility study of parametric response map analysis of diffusion-weighted magnetic resonance imaging scans of head and neck cancer patients for providing early detection of therapeutic efficacy,” Transl. Oncol. 2, 184190 (2009).
B. Ma, C. R. Meyer, M. D. Pickles, T. L. Chenevert, P. H. Bland, C. J. Galban, A. Rehemtulla, L. W. Turnbull, and B. D. Ross, “Voxel-by-voxel functional diffusion mapping for early evaluation of breast cancer treatment,” Inf. Process. Med. Imaging 21, 276287 (2009).
C. Reischauer, J. M. Froehlich, D. M. Koh, N. Graf, C. Padevit, H. John, C. A. Binkert, P. Boesiger, and A. Gutzeit, “Bone metastases from prostate cancer: Assessing treatment response by using diffusion-weighted imaging and functional diffusion maps–initial observations,” Radiology 257, 523531 (2010).
C. J. Galban, M. K. Han, J. L. Boes, K. A. Chughtai, C. R. Meyer, T. D. Johnson, S. Galban, A. Rehemtulla, E. A. Kazerooni, F. J. Martinez, and B. D. Ross, “Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression,” Nat. Med. 18, 17111715 (2012).
T. Guerrero, K. Sanders, J. Noyola-Martinez, E. Castillo, Y. Zhang, R. Tapia, R. Guerra, Y. Borghero, and R. Komaki, “Quantification of regional ventilation from treatment planning CT,” Int. J. Radiat. Oncol., Biol., Phys. 62, 630634 (2005).
T. Guerrero, K. Sanders, E. Castillo, Y. Zhang, L. Bidaut, T. Pan, and R. Komaki, “Dynamic ventilation imaging from four-dimensional computed tomography,” Phys. Med. Biol. 51, 777791 (2006).
J. M. Reinhardt, K. Ding, K. Cao, G. E. Christensen, E. A. Hoffman, and S. V. Bodas, “Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation,” Med. Image Anal. 12, 752763 (2008).
T. Yamamoto, S. Kabus, C. Lorenz, E. Mittra, J. C. Hong, M. Chung, N. Eclov, J. To, M. Diehn, B. W. Loo, Jr., and P. J. Keall, “Pulmonary ventilation imaging based on 4-Dimensional computed tomography: Comparison with pulmonary function tests and SPECT ventilation images,” Int. J. Radiat. Oncol., Biol., Phys. 90, 414422 (2014).
R. W. Glenny, “Determinants of regional ventilation and blood flow in the lung,” Intensive Care Med. 35, 18331842 (2009).
M. F. Vidal Melo, D. Layfield, R. S. Harris, K. O’Neill, G. Musch, T. Richter, T. Winkler, A. J. Fischman, and J. G. Venegas, “Quantification of regional ventilation-perfusion ratios with PET,” J. Nucl. Med. 44, 19821991 (2003).
J. F. Barrett and N. Keat, “Artifacts in CT: Recognition and avoidance,” Radiographics 24, 16791691 (2004).
R. Groell, K. H. Peichel, M. M. Uggowitzer, F. Schmid, and K. Hartwagner, “Computed tomography densitometry of the lung: A method to assess perfusion defects in acute pulmonary embolism,” Eur. J. Radiol. 32, 192196 (1999).
M. K. Fuld, A. F. Halaweish, S. E. Haynes, A. A. Divekar, J. Guo, and E. A. Hoffman, “Pulmonary perfused blood volume with dual-energy CT as surrogate for pulmonary perfusion assessed with dynamic multidetector CT,” Radiology 267, 747756 (2013).
D. R. Simpson, J. D. Lawson, S. K. Nath, B. S. Rose, A. J. Mundt, and L. K. Mell, “Utilization of advanced imaging technologies for target delineation in radiation oncology,” J. Am. Coll. Radiol. 6, 876883 (2009).
S. Faby, S. Kuchenbecker, S. Sawall, D. Simons, H. P. Schlemmer, M. Lell, and M. Kachelriess, “Performance of today’s dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: A simulation study,” Med. Phys. 42, 43494366 (2015).

Data & Media loading...


Article metrics loading...



Radiotherapy (RT) that selectively avoids irradiating highly functional lung regions may reduce pulmonary toxicity, which is substantial in lung cancer RT. Single-energy computed tomography (CT) pulmonary perfusion imaging has several advantages (e.g., higher resolution) over other modalities and has great potential for widespread clinical implementation, particularly in RT. The purpose of this study was to establish proof-of-principle for single-energy CT perfusion imaging.

Single-energy CT perfusion imaging is based on the following: (1) acquisition of end-inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast agents, (2) deformable image registration (DIR) for spatial mapping of those two CT image data sets, and (3) subtraction of the precontrast image data set from the postcontrast image data set, yielding a map of regional Hounsfield unit (HU) enhancement, a surrogate for regional perfusion. In a protocol approved by the institutional animal care and use committee, the authors acquired CT scans in the prone position for a total of 14 anesthetized canines (seven canines with normal lungs and seven canines with diseased lungs). The elastix algorithm was used for DIR. The accuracy of DIR was evaluated based on the target registration error (TRE) of 50 anatomic pulmonary landmarks per subject for 10 randomly selected subjects as well as on singularities (i.e., regions where the displacement vector field is not bijective). Prior to perfusion computation, HUs of the precontrast end-inspiratory image were corrected for variation in the lung inflation level between the precontrast and postcontrast end-inspiratory CT scans, using a model built from two additional precontrast CT scans at end-expiration and midinspiration. The authors also assessed spatial heterogeneity and gravitationally directed gradients of regional perfusion for normal lung subjects and diseased lung subjects using a two-sample two-tailed -test.

The mean TRE (and standard deviation) was 0.6 ± 0.7 mm (smaller than the voxel dimension) for DIR between pre contrast and postcontrast end-inspiratory CT image data sets. No singularities were observed in the displacement vector fields. The mean HU enhancement (and standard deviation) was 37.3 ± 10.5 HU for normal lung subjects and 30.7 ± 13.5 HU for diseased lung subjects. Spatial heterogeneity of regional perfusion was found to be higher for diseased lung subjects than for normal lung subjects, i.e., a mean coefficient of variation of 2.06 vs 1.59 ( = 0.07). The average gravitationally directed gradient was strong and significant ( 2 = 0.99, < 0.01) for normal lung dogs, whereas it was moderate and nonsignificant ( 2 = 0.61, = 0.12) for diseased lung dogs.

This canine study demonstrated the accuracy of DIR with subvoxel TREs on average, higher spatial heterogeneity of regional perfusion for diseased lung subjects than for normal lung subjects, and a strong gravitationally directed gradient for normal lung subjects, providing proof-of-principle for single-energy CT pulmonary perfusion imaging. Further studies such as comparison with other perfusion imaging modalities will be necessary to validate the physiological significance.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd