banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The Malkus–Lorenz water wheel revisited
Rent this article for


Image of Fig. 1.
Fig. 1.

Twelve-cup water wheel. The wheel’s axis is horizontal; water is added at the top, and the hanging cups leak.

Image of Fig. 2.
Fig. 2.

Continuous-cups water wheel. The axis is tilted so that the fixed cups can form a continuous ring; water enters at several locations, symmetric about the high point.

Image of Fig. 3.
Fig. 3.

Water wheel coordinates. The coordinate system is in the plane of the wheel, with the cups located on the circle of radius . A single input stream of water enters the highest cup at the point . The center of mass of the water in all the cups is located at a point within the circle.

Image of Fig. 4.
Fig. 4.

Example of preturbulence. (a) Plot of the angular velocity versus time. (b) The plot of versus shows the path of the center of mass motion in the plane of the wheel. A possibly very long initial period of apparent chaos is followed by convergence to a steady rotation.

Image of Fig. 5.
Fig. 5.

Bifurcation parameter . Plots of (a) angular velocity versus time and (b) the center of mass motion are shown for a pair of values of that straddle the value of . The initial conditions are very close to the stationary point at , and .

Image of Fig. 6.
Fig. 6.

Bifurcation parameter . Same comments as for Fig. 5, but straddling the point.

Image of Fig. 7.
Fig. 7.

Example of a chaotic orbit.

Image of Fig. 8.
Fig. 8.

Water wheel map for the water wheel parameters . Above the A curve the wheel always comes to a stop. Between the A and C bifurcation curves the only stable behavior is steady unidirectional motion. Between the C and D curves, steady turning, periodic motion, or chaos results depending on the initial conditions. Below the D curve there are only periodic orbits or chaos. Periodic orbit examples are symmetric pendulum motion within the E contour, a “fill and fall” motion between I and J, and others in an infinite number of narrow strips such as the partial curves F, G, and H, which lie in the chaotic region. The horizontal dashed line shows where the bifurcation plot of Fig. 10 is located, with only changing. The curved dashed line is an example with only the input water rate changing.

Image of Fig. 9.
Fig. 9.

Examples of stable periodic orbits. The motion of the water’s center of mass in the plane of the wheel is shown for five stable orbits, all with , located at five dots on Fig. 8. (a) Plot of the initial transient behavior leading to the periodic pendulum stable orbit. The final pendulum orbit and the other final orbits are shown enlarged in (b)–(f). The starting points are all close to .

Image of Fig. 10.
Fig. 10.

Bifurcation diagram for (see dotted line in Fig. 8). For each value of from 0.005 through 3.0 a run was started close to as was done for Fig. 8 and run for for the initial transient to be removed. For the next a dot is placed in the figure at each extremum (change in direction) of the coordinate of the center of mass. Abrupt changes as is varied indicate bifurcations.

Image of Fig. 11.
Fig. 11.

(a) The top and right borders indicate the standard Lorenz parameters (, , with ) for this plot and for Fig. 8. (b) As in Fig. 8, and are proportional to the inverse of the cup leakage and wheel slowdown time constants, respectively. The A, C, D, and E contours are for the ideal Malkus–Lorenz wheel, for which steady unidirectional motion occurs only between curves A and D, chaos is found only below curve C, and symmetrical pendulum motion occurs only within curve E. The labels Un, Pe, Ch, ChSt, and Aff indicate the type of motions (Unidirectional, Pendulum, Chaos, Chaos-then-Stationary, and Asymmetric fill-and-fall) found for a computer model of a 12-cup wheel, at the corresponding locations on this simplified version of Fig. 8. The values were found using the procedure outlined in Sec. VII A. The behavior of the 12-cup wheel is generally similar to that of the ideal water wheel, except for large .


Generic image for table
Table I.

Water wheel parameters.

Generic image for table
Table II.

Scaling of distance and time units.

Generic image for table
Table III.

Variables and parameters for the 12-cup water wheel. SI units are used.


Article metrics loading...


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The Malkus–Lorenz water wheel revisited