1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
A trip to the end of the universe and the twin “paradox”
Rent:
Rent this article for
USD
10.1119/1.2830528
/content/aapt/journal/ajp/76/4/10.1119/1.2830528
http://aip.metastore.ingenta.com/content/aapt/journal/ajp/76/4/10.1119/1.2830528

Figures

Image of Fig. 1.
Fig. 1.

Tina’s journey is separated into four phases. She starts from point ①, accelerates up to maximum velocity at point ②, and slows down until she reaches the turning point ③. Then she accelerates in the opposite direction and slows down again until she comes home. Signals that were emitted by Tina in the accelerating phase reach the Earth twin Eric in the interval .

Image of Fig. 2.
Fig. 2.

Tina’s current velocity for her flight to Vega and return to Earth with respect to her own proper time. The maximum speed is reached at points ② and ④.

Image of Fig. 3.
Fig. 3.

The earth twin Eric sees/receives Tina’s proper time (ordinate) at his proper time (abscissa).

Image of Fig. 4.
Fig. 4.

Spacetime diagram for Tina’s flight to Vega and return to Earth with respect to Eric’s frame. At point ③ Tina reaches Vega and immediately returns. At ② and ④ she changes her acceleration direction. The small circles represent the events when Tina sends a time signal to Eric. They are separated by a single year with respect to her proper time . Note that the time units are not equally spaced on Tina’s worldline.

Image of Fig. 5.
Fig. 5.

The rocket twin Tina sees/receives Eric’s proper time (ordinate) at her proper time (abscissa).

Image of Fig. 6.
Fig. 6.

The earth twin Eric sends a time signal every year with respect to his proper time . The dashes on Tina’s worldline mark the years of her proper time. Eric’s first signal does not reach Tina until she already decelerates to her destination ③.

Image of Fig. 7.
Fig. 7.

Wave vector of an incoming light ray in spherical coordinates with respect to Eric’s rest frame. The twin Tina is currently moving with velocity along the direction.

Image of Fig. 8.
Fig. 8.

An object a distance from the origin has an apex angle . An observer at rest at the current position would measure an apex angle .

Image of Fig. 9.
Fig. 9.

An object is located at position with respect to the initial position of Tina. After some time, Tina’s current position is and the point would have the relative position with respect to an observer at rest at Tina’s current position.

Image of Fig. 10.
Fig. 10.

The observation angle is plotted versus the velocity for . In the first instance, an object with fixed distance depending on and arbitrary angle apparently approaches the center of motion. For higher velocities, it recedes again. Because is reached only approximately, an object at seems to “freeze” at .

Image of Fig. 11.
Fig. 11.

The observation angle is plotted versus the velocity for . Note that even objects that are actually behind the observer might apparently “freeze” in front of the observer.

Image of Fig. 12.
Fig. 12.

Stellar sky at in the -representation where is the abscissa and is the ordinate. The center of the image corresponds to the direction of motion. The circles of latitude and the meridians are separated by 5°.

Image of Fig. 13.
Fig. 13.

Stellar sky at in the representation. Because of aberration, the nodes of the stellar sphere move together.

Image of Fig. 14.
Fig. 14.

Lines of constant redshift at velocity in the representation. From inside to outside: to , step 0.2; the bold line marks .

Image of Fig. 15.
Fig. 15.

Lines of constant redshift at velocity in the representation. From inside to outside: to , step 0.2; the bold line marks . Note that most of the sky is redshifted even for directions .

Image of Fig. 16.
Fig. 16.

The observation angle is plotted versus the velocity . The solid lines are lines of constant Doppler shift according to Eq. (59); the dashed lines represent the aberration of the angle (see Eq. (60)).

Image of Fig. 17.
Fig. 17.

Planck spectrum at temperature with a maximum at .

Image of Fig. 18.
Fig. 18.

The stellar sky marked by some constellations as seen at rest. In the representation the right ascension is plotted on the abscissa and the declination is plotted on the ordinate. Abbreviations: (Aql) Aquila, (Cas) Cassiopeia, (Crt) Crater, (Cru) Crux, (Cyg) Cygnus, (Her) Hercules, (Leo) Leo, (Ori) Orion, (Peg) Pegasus, (UMi) Ursa Minor.

Image of Fig. 19.
Fig. 19.

The stellar sky as seen by an observer passing the Earth with 50% of the speed of light. The distortion of the constellation Southern Cross (Cru) is due to the projection and the aberration effect (see Fig. 12).

Image of Fig. 20.
Fig. 20.

The stellar sky as seen by an observer passing the Earth with 90% of the speed of light.

Image of Fig. 21.
Fig. 21.

CIE 1931 color matching functions .

Tables

Generic image for table
Table I.

The coefficients for Eqs. (62) and (64) are taken from Ref. 17.

Generic image for table
Table II.

Star data of some constellations from Figs. 18–20. : right ascension, : declination, : trigonometric parallax (milliarcsec), B-V: Johnson B-V color, : temperature (Kelvin) from Eq. (62), HIP: Hipparcos number.

Generic image for table
Table III.

The stars of Table II have distance (parsec) and temperature (Kelvin) at velocities and in the direction .

Generic image for table
Table IV.

The apparent visual magnitude of the stars of Table II have bolometric magnitudes at velocities , , and in the direction .

Generic image for table
Table V.

Distance from Earth, maximum speed and proper time of both twins for several stellar destinations. In the solar system we will reach only a few percent of the speed of light. Thus, time dilation can be neglected. However, in the neighborhood of the solar system time dilation is crucial. The “END” of the universe represents the maximum distance of about 13.7 billion light years that astronomers are able to observe.

Loading

Article metrics loading...

/content/aapt/journal/ajp/76/4/10.1119/1.2830528
2008-04-01
2014-04-17
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A trip to the end of the universe and the twin “paradox”
http://aip.metastore.ingenta.com/content/aapt/journal/ajp/76/4/10.1119/1.2830528
10.1119/1.2830528
SEARCH_EXPAND_ITEM