1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Understanding Pound-Drever-Hall locking using voltage controlled radio-frequency oscillators: An undergraduate experiment
Rent:
Rent this article for
USD
10.1119/1.3671074
/content/aapt/journal/ajp/80/3/10.1119/1.3671074
http://aip.metastore.ingenta.com/content/aapt/journal/ajp/80/3/10.1119/1.3671074

Figures

Image of Fig. 1.
Fig. 1.

λ/4 coaxial transmission line resonator. (a) Relevant dimensions. (b) The coupling loops inserted in the cartridges. (c) View from the open end (current node). (d) View of top of cavity (voltage node). The tops of the cartridges are seen here.

Image of Fig. 2.
Fig. 2.

Cavity resonance under critical coupling conditions. (a) Transmitted signal. (b) Reflected signal. The loaded quality factor Q L is determined by fitting a Lorentzian to the reflected power [see Eq. (9)]. A linearly varying incident power has been included in the fit to accommodate for the frequency dependent losses of components other than the cavity.

Image of Fig. 3.
Fig. 3.

A lumped element circuit model of the input transmission line, coupling, and the resonating cavity.

Image of Fig. 4.
Fig. 4.

Experimental setup to observe the real and imaginary parts of the cavity reflection coefficient. Depending on the bandwidth of the oscilloscope, it may be necessary to insert a low-pass filter after the mixer output. Key: ISO (isolator), SP (splitter), ADL (adjustable delay line), CR (circulator), MX (mixer), AMP (amplifier), DD (zero-bias Schottky diode), M-M (male-to-male connector), FG (function generator).

Image of Fig. 5.
Fig. 5.

Observation of cavity transmission and reflection using the setup of Fig. 4. (a) Transmission through the cavity. (b) Observation of the real part of the cavity reflection coefficient (to within a positive scale factor). (c) Observation of the imaginary part of the reflection coefficient (to within a positive scale factor). The curve labeled “delay line effect” is a calculation accounting for the variation in phase shift of the delay line with frequency. The calculations are vertically scaled for the best least squares fits.

Image of Fig. 6.
Fig. 6.

Experimental setup for measuring Fourier components of the modulated voltage controlled oscillator. The relation between β and the power in each Fourier component can be measured using this setup. The computer triggers the function generator to begin scanning and the oscilloscope to begin measuring data. Key: ISO: isolator, SP: splitter, CR: circulator, MX: mixer, AMP: amplifier, DD: zero-bias Schottky diode, M-M: male-to-male connector, BP: band pass filter for 10 MHz.

Image of Fig. 7.
Fig. 7.

Carrier and sideband powers as a function of the frequency modulation index β observed using the cavity filter method, with Ω/(2π) = 6 MHz, and an RF spectrum analyzer with Ω/(2π) = 10 MHz. The values of β are determined from the measured voltage controlled oscillator dc tuning curve. Also shown are the theoretically expected relations P c  = [J 0(β)]2 P 0 and P s  = [J 1(β)]2 P 0 (see text).

Image of Fig. 8.
Fig. 8.

The RF equivalent Pound-Drever-Hall locking method. The configuration shown is for locking the voltage controlled oscillator. The relative phases of the 10MHz modulating and demodulating signals are set using coaxial cable lengths, which depend on the phase shifts of various components. To examine the Pound-Drever-Hall error signal as the voltage controlled oscillator frequency is tuned, as in Fig. 9, the feedback control circuit is omitted. The voltage controlled oscillator offset is scanned by a function generator, and modulation applied through a bias T. The output of the mixer (I) is low-pass filtered and displayed on an oscilloscope. Key: SP: splitter, CR: circulator, MX:- mixer, AMP: amplifier, BP: band pass filter for 10 MHz.

Image of Fig. 9.
Fig. 9.

Pound-Drever-Hall error signal as the voltage controlled oscillator frequency is tuned. (a) Transmission through the cavity. (b) Pound-Drever-Hall error signal for a voltage controlled oscillator modulation frequency of Ω/(2π) = 10 MHz (see text for details).

Image of Fig. 10.
Fig. 10.

Experimental data for determining the expansion coefficient of copper, aluminum, and super invar. By measuring the frequency change as the temperature of the cavity changes, we can determine the expansion of the metal which composes the inner cylinder. Also shown are the linear fits used for the determination of the linear coefficients of thermal expansion.

Tables

Generic image for table
Table I.

Values of linear thermal expansion coefficients.

Loading

Article metrics loading...

/content/aapt/journal/ajp/80/3/10.1119/1.3671074
2012-02-22
2014-04-21
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Understanding Pound-Drever-Hall locking using voltage controlled radio-frequency oscillators: An undergraduate experiment
http://aip.metastore.ingenta.com/content/aapt/journal/ajp/80/3/10.1119/1.3671074
10.1119/1.3671074
SEARCH_EXPAND_ITEM