Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapt/journal/ajp/83/12/10.1119/1.4932546
1.
1. F. F. Reuss, “ Sur un nouvel effet de l'électricité galvanique,” Mém. Soc. Impériale Nat. Moscou 2, 327337 (1809).
2.
2. A. Tiselius, “ A new apparatus for electrophoretic analysis of colloidal mixtures,” Trans. Faraday Soc. 33, 524531 (1937).
http://dx.doi.org/10.1039/tf9373300524
3.
3. S. R. Doustjalali et al., “ Two dimensional gel electrophoresis: An overview of proteomic technique in cancer research,” J. Proteomics Bioinf. 7(3), 077081 (2014).
http://dx.doi.org/10.4172/jpb.1000305
4.
4. B. L. Karger, A. S. Cohen, and A. Guttman, “ High-performance capillary electrophoresis in the biological sciences,” J. Chromatogr. 492, 585614 (1989).
http://dx.doi.org/10.1016/S0378-4347(00)84480-1
5.
5. H. G. Kunkel and A. Tiselius, “ Electrophoresis of proteins on filter paper,” J. Gen. Physiol. 35(1), 89118 (1951).
http://dx.doi.org/10.1085/jgp.35.1.89
6.
6. B. K. Nunnally and K. Yao, “ The use of capillary electrophoresis in vaccines,” Anal. Lett. 40(4), 615627 (2007).
http://dx.doi.org/10.1080/00032710701241966
7.
7. C. Brown and P. L. Kirk, “ Paper electrophoresis in the identification of writing inks–Comparison with horizontal paper chromatography,” J. Crim. Law Criminol. Police Sci. 45(4), 473480 (1955).
http://dx.doi.org/10.2307/1140040
8.
8. V. A. Rumiantsev et al., “ Electronic microscopy in endodontic electrophoresis efficience assessment,” Stomatologiia (Mosk) 92(2), 48 (2013). (in Russian); available at http://www.ncbi.nlm.nih.gov/pubmed/23715442?report=abstract.
9.
9.Northeastern University Introductory Physics Lab (IPL) website, <http://www.northeastern.edu/physics/undergraduate/introductory-physics-lab/>.
10.
10. S. Erramilli, F. Osterberg, and B. Vogelaar, “ Undergraduate laboratory: Principles of gel electrophoresis,” Am. J. Phys. 63(7), 639643 (1995).
http://dx.doi.org/10.1119/1.17826
11.
11. D. G. Miles, Jr., D. W. Bushman, and Z. Y. Chen, “ Protein gel electrophoresis in the undergraduate physics laboratory,” Am. J. Phys. 73(12), 11861189 (2005).
http://dx.doi.org/10.1119/1.1943431
12.
12.Standard introductory gel electrophoresis procedure, <http://www.edvotek.com/site/pdf/Electrophoresis_Guide.pdf>.
13.
13. O. Batishchev and A. Hyde, Introductory Physics Laboratory ( Hayden-McNeil Publishing, Plymouth, MI, 2015), pp. 261274.
14.
14. H. E. Revercomb and E. A. Mason, “ Theory of plasma chromatography/gaseous electrophoresis—A review,” Anal. Chem. 47(7), 970983 (1975).
http://dx.doi.org/10.1021/ac60357a043
15.
15. K. S. Pitre, “ Theory of electrophoresis,” in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, from Encyclopedia of Separation Science ( Elsevier B. V., Amsterdam, Netherlands, 2000), pp. 13481355.
16.
16. Ch. Wunderly, Principles and Applications of Paper Electrophoresis ( Elsevier Publishing Company, Amsterdam, Netherlands, 1961), pp. 417.
17.
17. J. D. Huba, NRL Plasma Formulary ( Beam Physics Branch, Plasma Physics Division, Naval Research Laboratory, Washington DC, 2013), p. 28.
18.
18. J. L. Viovy, “ Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms,” Rev. Mod. Phys. 72(3), 813872 (2000).
http://dx.doi.org/10.1103/RevModPhys.72.813
19.
19. E. M. Purcell, “ Life at low Reynolds number,” Am. J. Phys. 45(3), 311 (1977).
http://dx.doi.org/10.1119/1.10903
20.
20. T. Maniatis, A. Jeffrey, and H. van deSande, “ Chain length determination of small double- and single-stranded DNA molecules by polyacrylamide gel electrophoresis,” Biochemistry 14(17), 37873794 (1975).
http://dx.doi.org/10.1021/bi00688a010
21.
21. P. G. de Gennes, “ Reptation of a polymer chain in the presence of fixed obstacles,” J. Chem. Phys. 55(2), 572579 (1971).
http://dx.doi.org/10.1063/1.1675789
22.
22. X. H. Guo and S. H. Chen, “ Reptation mechanism in protein-sodium-dodecylsulfate (SDS) polyacrylamide-gel electrophoresis,” Phys. Rev. Lett. 64(21), 25792582 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.2579
23.
23. J. Maizel, Jr., “ SDS polyacrylamide gel electrophoresis,” Trends Biochem. Sci. 25(12), 590592 (2000).
http://dx.doi.org/10.1016/S0968-0004(00)01693-5
24.
24. A. Shapiro, E. Viñuela, and J. Maizel, Jr., “ Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels,” Biochem. Biophys. Res. Commun. 28(5), 815820 (1967).
http://dx.doi.org/10.1016/0006-291X(67)90391-9
25.
25. S. J. Al-Awadi, A. M. Ghareeb, and W. H. Salo, “ Food dyes as an alternative tracking dye for DNA gel electrophoresis,” J. Baghdad Sci. 10(4), 11501156 (2013); available at http://www.iasj.net/iasj?func=fulltext&aId=81144.
26.
26.Excerpt from the Code of Federal Regulations (CFR, Title 21, Part 74) where the government certified food colorings required by the Food, Drug, and Cosmetics (FD&C) Act are listed, <http://www.gpo.gov/fdsys/pkg/CFR-2001-title21-vol1/pdf/CFR-2001-title21-vol1-part74.pdf>.
27.
27.Gel electrophoresis manual that lists the seven FD&C dyes and their important parameters, <http://www.bio-rad.com/webroot/web/pdf/lse/literature/M1665078EDU.pdf>.
28.
28.Edvotek M6Plus electrophoresis apparatus, <http://www.edvotek.com/500>.
29.
29.Duosource power supply by Edvotek, <http://www.edvotek.com/509?sc=7&category=1807>.
31.
31. N. H. Martin and G. T. Franglen, “ The use and limitations of filter-paper electrophoresis,” J. Clin. Path. 7(2), 87105 (1954).
http://dx.doi.org/10.1136/jcp.7.2.87
32.
32. B. Ismail and S. Nielsen, “ Basic principles of chromatography,” in Food Analysis, edited by S. Nielsen ( Springer Science + Business Media LLC, New York, NY, 2010), pp. 477478.
33.
33.Northeastern Introductory Physics Lab error calculator, <http://www.northeastern.edu/physics/undergraduate/introductory-physics-lab/error-calculator/>.
http://aip.metastore.ingenta.com/content/aapt/journal/ajp/83/12/10.1119/1.4932546
Loading
/content/aapt/journal/ajp/83/12/10.1119/1.4932546
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapt/journal/ajp/83/12/10.1119/1.4932546
2015-12-01
2016-09-30

Abstract

An experiment studying the physical principles of electrophoresis in liquids was developed for an undergraduate laboratory. We have improved upon the standard agarose gelelectrophoresis experimental regime with a straightforward and cost-effective procedure, in which drops of widely available black food coloring were separated by electric field into their dye components on strips of chromatography paper soaked in a baking soda/water solution. Terminal velocities of seven student-safe dyes were measured as a function of the electric potential applied along the strips. The molecular mobility was introduced and calculated by analyzing data for a single dye. Sources of systematic and random errors were investigated.

Loading

Full text loading...

/deliver/fulltext/aapt/journal/ajp/83/12/1.4932546.html;jsessionid=2hPrJDtmTkNbj25F0kc0zy-A.x-aip-live-03?itemId=/content/aapt/journal/ajp/83/12/10.1119/1.4932546&mimeType=html&fmt=ahah&containerItemId=content/aapt/journal/ajp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=ajp.aapt.org/83/12/10.1119/1.4932546&pageURL=http://scitation.aip.org/content/aapt/journal/ajp/83/12/10.1119/1.4932546'
Top,Right1,Right2,