Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. G. MacAdam, A. Steinbach, and C. Wieman, “ A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60(12), 10981111 (1992).
2. A. S. Arnold, J. S. Wilson, and M. G. Boshier, “ A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69(3), 12361239 (1998).
3. R. S. Conroy, A. Carleton, A. Carruthers, B. D. Sinclair, C. F. Rae, and K. Dholakia, “ A visible extended cavity diode laser for the undergraduate laboratory,” Am. J. Phys. 68(10), 925931 (2000).
4. K. G. Libbrecht, R. A. Boyd, P. A. Willems, T. L. Gustavson, and K. K. Kim, “ Teaching physics with 670 nm diode lasers—construction of stabilized lasers and lithium cells,” Am. J. Phys. 63(8), 729737 (1995).
5. Chris Leahy, J. Todd Hastings, and P. M. Wilt, “ Temperature dependence of Doppler-broadening in rubidium: An undergraduate experiment,” Am. J. Phys. 65(5), 367371 (1997).
6. G. N. Rao, M. N. Reddy, and E. Hecht, “ Atomic hyperfine structure studies using temperature/current tuning of diode lasers: An undergraduate experiment,” Am. J. Phys. 66(8), 702712 (1998).
7. D. A. Van Baak, “ Resonant Faraday rotation as a probe of atomic dispersion,” Am. J. Phys. 64(6), 724735 (1996).
8. Abraham J. Olson, Evan J. Carlson, and Shannon K. Mayer, “ Two-photon spectroscopy of rubidium using a grating-feedback diode laser,” Am. J. Phys. 74(3), 218223 (2006).
9. M. B. Kienlen, N. T. Holte, H. A. Dassonville, A. M. C. Dawes, K. D. Iversen, R. M. McLaughlin, and S. K. Mayer, “ Collimated blue light generation in rubidium vapor,” Am. J. Phys. 81(6), 442449 (2013).
10. Abraham J. Olson and Shannon K. Mayer, “ Electromagnetically induced transparency in rubidium,” Am. J. Phys. 77(2), 116121 (2009).
11. T. Pang, “ Electromagnetically induced transparency,” Am. J. Phys. 69(5), 604606 (2001).
12. Christopher Luetjen, Jonathan Hallsted, and Michaela Kleinert, “ Measuring the refractive index of thin transparent films using an extended cavity diode laser,” Am. J. Phys. 81(12), 929935 (2013).
13. Carl E. Wieman and Leo Hollberg, “ Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 120 (1991).
14. M. G. Littman and H. J. Metcalf, “ Spectrally narrow pulsed dye laser without beam expander,” Appl. Opt. 17(14), 22242227 (1978).
15. Eugene Hecht, Optics ( Addison-Wesley, San Francisco, 2002), p. 478.
16.Ioffe Physico-Technical Institute Website, <>.

Data & Media loading...


Article metrics loading...



We describe an experimental setup for observing the effect of optical feedback in an extended cavity diode laser. A simple grating spectrometer is used to observe the naturally occurring wavelength spread and mode spacing for the diode. When the diode is provided with optical feedback from a grating in the Littman-Metcalf configuration, the tunability of the diode is easily observed. This setup presents an intuitive and cost-effective method for demonstrating optical feedback in an advanced undergraduate laboratory setting.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd