Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.See for the Atacama Large Millimeter/submillimeter Array (ALMA).
2.See for the Very Large Array (VLA).
3.See for the Very Large Telescope Interferometer (VLTI).
4.See for the Nobeyama Radio Observatory.
5.See for the Combined Array for Research in Millimeter-wave Astronomy (CARMA).
6. A. A. Michelson and F. G. Pease, “ Measurement of the diameter of alpha Orionis with the interferometer,” Astrophys. J. 53, 249259 (1921).
7.See supplementary material at for a set of laboratory instructions.[Supplementary Material]
8. A. A. Michelson and E. W. Morley, “ On the relative motion of the earth and of the luminiferous ether,” in The Sidereal Messenger ( Carleton College Observatory, Northfield, MN, 1887), Vol. 6, pp. 306310, 6, 306.
9. A. C. Melissinos and J. Napolitano, Experiments in Modern Physics ( Academic, New York, 2003).
10. R. A. Serway and J. W. Jewett, Physics for Scientists and Engineers ( Cengage Learning, Boston, MA, 2013).
11. J. O. Bennett, M. Donahue, N. Schneider, and M. Voit, The Cosmic Perspective ( Addison-Wesley, Reading, MA, 2013).
12. R. Wolfson and J. M. Pasachoff, Physics for Scientists and Engineers ( Addison-Wesley, Reading, MA, 1999).
13. G. Fang, L. Huang, L. Xin, H. Zhao, L. Huo, and L. Wu, “ Geometric explanation of conic-section interference fringes in a Michelson interferometer,” Am. J. Phys. 81, 670675 (2013).
14. J. W. Rudmin, G. R. Taylor, P. M. Hand, J. N. Ashworth, and P. H. Wehr, “ Simple ultra-low-cost undergraduate holography using a modified Michelson interferometer,” Am. J. Phys. 48, 746748 (1980).
15. D. R. Matthys and F. L. Pedrotti, “ Fourier transforms and the use of a microcomputer in the advanced undergraduate laboratory,” Am. J. Phys. 50, 990995 (1982).
16. G. Da Costa, G. Kiedansky, and R. Siri, “ Optoelectronic seismograph using a Michelson interferometer with a sliding mirror,” Am. J. Phys. 56, 993997 (1988).
17. J. B. Diamond, D. P. Donnelly, J. D. Breault, and M. E. McCarthy, “ Measuring small vibrations with interferometry,” Am. J. Phys. 58, 919922 (1990).
18. W. R. Mellen, “ Interference patterns from circularly polarized light using a Michelson interferometer,” Am. J. Phys. 58, 580581 (1990).
19. J. B. Norman, “ Phase-conjugate Michelson interferometers for all-optical image processing and computing,” Am. J. Phys. 60, 212220 (1992).
20. R. H. Belansky and K. H. Wanser, “ Laser Doppler velocimetry using a bulk optic Michelson interferometer: A student laboratory experiment,” Am. J. Phys. 61, 10141019 (1993).
21. T. E. Kiess and R. E. Berg, “ Dominant color reversals and chromaticity cusps in interferometric color mixing,” Am. J. Phys. 64, 928934 (1996).
22. P. Nachman, P. M. Pellegrino, and A. C. Bernstein, “ Mechanical resonance detected with a Michelson interferometer,” Am. J. Phys. 65, 441443 (1997).
23. P. J. Fox, R. E. Scholten, M. R. Walkiewicz, and R. E. Drullinger, “ A reliable, compact, and low-cost Michelson wavemeter for laser wavelength measurement,” Am. J. Phys. 67, 624630 (1999).
24. K. Kuroda, M. Ohashi, S. Miyoki et al., “ Large-scale cryogenic gravitational wave telescope,” Int. J. Mod. Phys. D 8, 557579 (1999).
25. B. P. Abbott, R. Abbott, R. Adhikari et al., “ LIGO: The laser interferometer gravitational-wave observatory,” Rep. Prog. Phys. 72, 076901-1076901-25 (2009).
26. G. M. Harry and LIGO Scientific Collaboration, “ Advanced LIGO: The next generation of gravitational wave detectors,” Classical Quantum Gravity 27, 084006-1084006-11 (2010).
27. J. L. Pawsey and R. N. Bracewell, Radio Astronomy ( Oxford U.P., New York, 1955).
28. J. L. Steinberg and J. Lequeux, Radio Astronomy ( McGraw-Hill, New York, 1963).
29. W. N. Christiansen and J. A. Högbom, Radiotelescopes ( Cambridge U.P., Cambridge, 1985).
30. T. L. Wilson, K. Rohlfs, and S. Hüttemeister, Tools of Radio Astronomy ( Springer, Berlin, 2013).
31. M. Shao and M. M. Colavita, “ Long-baseline optical and infrared stellar interferometry,” Annu. Rev. Astron. Astrophys. 30, 457498 (1992).
32. A. Quirrenbach, “ Optical interferometry,” Annu. Rev. Astron. Astrophys. 39, 353401 (2001).
33. G. B. Taylor, C. L. Garilli, and R. A. Perley, Synthesis Imaging in Radio Astronomy II, ASP Conference Series Vol. 181 ( Astronomy Society of the Pacific, San Francisco, CA, 1999).
34. A. R. Thompson, J. M. Moran, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy ( Wiley, New York, 2007).
35. M. J. Pryor, “ Measuring artificial star separation by interference,” Am. J. Phys. 27, 101103 (1959).
36. M. A. Illarramendi, R. Hueso, J. Zubia, G. Aldabaldetreku, G. Durana, and A. Sánchez-Lavega, “ A daylight experiment for teaching stellar interferometry,” Am. J. Phys. 82, 649653 (2014).
37. J. D. Monnier, “ Optical interferometry in astronomy,” Rep. Prog. Phys. 66, 789857 (2003).
38.See for the Sun's azimuthal and elevation angles as a function of time.
39. T. K. Das, H. Sarkar, and A. K. Sen, “ The ratio of the radio and optical diameters of the sun at centimeter wavelengths,” Sol. Phys. 194, 155163 (2000).

Data & Media loading...


Article metrics loading...



We report development of a simple and affordable radio interferometer suitable as an educational laboratory experiment. The design of this interferometer is based on the Michelson and Pease stellar optical interferometer, but instead operates at the radio wavelength of ∼11 GHz (∼2.7 cm), requiring much less stringent optical accuracy in its design and use. We utilize a commercial broadcast satellite dish and feedhorn with two flat side mirrors that slide on a ladder, providing baseline coverage. This interferometer can resolve and measure the diameter of the Sun, even on a day with marginal weather. Commercial broadcast satellites provide convenient point sources for comparison to the Sun's extended disk. The mathematical background of an adding interferometer is presented, as is its design and development, including the receiver system, and sample measurements of the Sun. Results from a student laboratory report are shown. With the increasing importance of interferometry in astronomy, the lack of educationalinterferometers is an obstacle to training the future generation of astronomers. This interferometer provides the hands-on experience needed to fully understand the basic concepts of interferometry.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd