Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aapt/journal/ajp/84/7/10.1119/1.4948268
1.
J. S. Bell, “ On the Einstein Podoisky Rosen paradox,” Physics 1, 195200 (1964); available at https://cds.cern.ch/record/111654/files/vol1p195-200_001.pdf.
2.
Richard Feynman, “ Simulating physics with computers,” Int. J. Theor. Phys. 21, 467488 (1982).
http://dx.doi.org/10.1007/BF02650179
3.
Feynman and Computation, edited by A. G. Hey ( Perseus, Reading, MA, 1999).
4.
Ref. 3, pp. 133153.
5.
Ref. 3, p. xiii.
6.
Tony Hey, personal communication (2016).
7.
David Mermin, personal communication (2016).
8.
Stuart J. Freeman and John Clauser, “ Experimental tests of local hidden-variable theories,” Phys. Rev. Lett. 28, 938941 (1972);
http://dx.doi.org/10.1103/PhysRevLett.28.938
John Clauser, “ Experimental investigation of a polarization correlation anomaly,” Phys. Rev. Lett. 36, 12231226 (1976).
http://dx.doi.org/10.1103/PhysRevLett.36.1223
9.
Richard Feynman, Quantum Mechanical View of Reality (Part 4) [minute 25:00] <https://www.youtube.com/watch?v=hWTbtXgqYMo&feature=youtu.be&t=25m>.
10.
Andrew Whitaker, John Stewart Bell and Twentieth Century Physics ( Oxford U.P., Oxford, 2016).
11.
See, for example, <http://motls.blogspot.co.uk/2014/11/bells-and-sycophants-criticism-of-von.html> for undervaluing Bell's achievements.
12.
Michelle Feynman, Perfectly Reasonable Departures from the Beaten Track ( Basic Books, New York, 2006), p. 367.
13.
N. David Mermin, “ Not quite so simply no hidden variables,” Am. J. Phys. 60, 2527 (1992).
http://dx.doi.org/10.1119/1.17037
14.
S. Kochen and E. P. Specker, “ The problem of hidden variables in quantum mechanics,” J. Math. Mech. 6, 885893 (1967).
15.
J. S. Bell, “ On the problem of hidden variables in quantum mechanics,” Rev. Mod. Phys. 38, 447452 (1966).
http://dx.doi.org/10.1103/RevModPhys.38.447
16.
J. von Neumann, Mathematical Foundations of Quantum Mechanics ( Princeton U.P., Princeton, 1955) [translation of German edition originally published by Springer in Berlin in 1932].
http://aip.metastore.ingenta.com/content/aapt/journal/ajp/84/7/10.1119/1.4948268
Loading
/content/aapt/journal/ajp/84/7/10.1119/1.4948268
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aapt/journal/ajp/84/7/10.1119/1.4948268
2016-07-01
2016-09-30