Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. D. Yang, R. X. Yan, and M. Fardy, Nano Lett. 10(5), 1529 (2010).
2. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Mater. Today 9(10), 18 (2006).
3. R. X. Yan, D. Gargas, and P. D. Yang, Nat. Photonics 3(10), 569 (2009).
4. N. Mingo, Appl. Phys. Lett. 84(14), 2652 (2004).
5. N. Nakpathomkun, H. Q. Xu, and H. Linke, Phys. Rev. B 82(23), 235428 (2010).
6. C. X. Lin and M. L. Povinelli, Appl. Phys. Lett. 97(7), 071110 (2010).
7. J. Kupec, R. L. Stoop, and B. Witzigmann, Opt. Express 18(26), 27589 (2010).
8. J. Kupec and B. Witzigmann, Opt. Express 17(12), 10399 (2009).
9. P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M. E. Pistol, Nano Lett. 12(4), 1990 (2012).
10. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, Nano Lett. 10(2), 439 (2010).
11. S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, and J. G. Rivas, ACS Nano 5(3), 2316 (2011).
12. M. Lindenberg, I. Kang, S. L. Johnson, T. Missalla, P. A. Heimann, Z. Chang, J. Larsson, P. H. Bucksbaum, H. C. Kapteyn, H. A. Padmore, R. W. Lee, J. S. Wark, and R. W. Falcone, Phys. Rev. Lett. 84(1), 111 (2000).
13. J. Larsson, E. Judd, R. W. Falcone, A. Asfaw, R. W. Lee, P. A. Heimann, H. A. Padmore, and J. Wark, Inst. Phys. Conf. Ser. 151, 367 (1996).
14. M. Lindenberg, J. Larsson, K. Sokolowski-Tinten, K. J. Gaffney, C. Blome, O. Synnergren, J. Sheppard, C. Caleman, A. G. MacPhee, D. Weinstein, D. P. Lowney, T. K. Allison, T. Matthews, R. W. Falcone, A. L. Cavalieri, D. M. Fritz, S. H. Lee, P. H. Bucksbaum, D. A. Reis, J. Rudati, P. H. Fuoss, C. C. Kao, D. P. Siddons, R. Pahl, J. Als-Nielsen, S. Duesterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, T. Tschentscher, J. Schneider, D. von der Linde, O. Hignette, F. Sette, H. N. Chapman, R. W. Lee, T. N. Hansen, S. Techert, J. S. Wark, M. Bergh, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. A. Akre, E. Bong, P. Krejcik, J. Arthur, S. Brennan, K. Luening, and J. B. Hastings, Science 308(5720), 392 (2005).
15. M. Lindenberg, S. Engemann, K. J. Gaffney, K. Sokolowski-Tinten, J. Larsson, P. B. Hillyard, D. A. Reis, D. M. Fritz, J. Arthur, R. A. Akre, M. J. George, A. Deb, P. H. Bucksbaum, J. Hajdu, D. A. Meyer, M. Nicoul, C. Blome, T. Tschentscher, A. L. Cavalieri, R. W. Falcone, S. H. Lee, R. Pahl, J. Rudati, P. H. Fuoss, A. J. Nelson, P. Krejcik, D. P. Siddons, P. Lorazo, and J. B. Hastings, Phys. Rev. Lett. 100(13), 135502 (2008).
16. M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, Science 306(5702), 1771 (2004).
17. P. Sondhauss, J. Larsson, M. Harbst, G. A. Naylor, A. Plech, K. Scheidt, O. Synnergren, M. Wulff, and J. S. Wark, Phys. Rev. Lett. 94(12), 125509 (2005).
18. S. O. Mariager, D. Khakhulin, H. T. Lemke, K. S. Kjaer, L. Guerin, L. Nuccio, C. B. Sorensen, M. M. Nielsen, and R. Feidenhans'l, Nano Lett. 10(7), 2461 (2010).
19. H. Chin, R. W. Schoenlein, T. E. Glover, P. Balling, W. P. Leemans, and C. V. Shank, Phys. Rev. Lett. 83(2), 336 (1999).
20. H. M. Vandriel, Phys. Rev. B 35(15), 8166 (1987).
21. P. Caroff, M. E. Messing, B. M. Borg, K. A. Dick, K. Deppert, and L. E. Wernersson, Nanotechnology 20(49), 495606 (2009).
22. H. Enquist, H. Navirian, R. Nuske, C. V. Schmising, A. Jurgilaitis, M. Herzog, M. Bargheer, P. Sondhauss, and J. Larsson, Opt. Lett. 35(19), 3219 (2010).
23. E. Warren, X-ray diffraction (Addison-Wesley, Reading, MA, 1969), pp. x.
24. O. Synnergren, T. N. Hansen, S. Canton, H. Enquist, P. Sondhauss, A. Srivastava, and J. Larsson, Appl. Phys. Lett. 90(17), 171929 (2007).
25. E. Aspnes and A. A. Studna, Phys. Rev. B 27(2), 985 (1983).
26. P. Sondhauss, O. Synnergren, T. N. Hansen, S. E. Canton, H. Enquist, A. Srivastava, and J. Larsson, Phys. Rev. B 78(11), 115202 (2008).
27. N. Mingo and D. A. Broido, Phys. Rev. Lett. 93(24), 246106 (2004).

Data & Media loading...


Article metrics loading...



We report on measurements of the light absorption efficiency of InSbnanowires. The absorbed 70 fs light pulse generates carriers, which equilibrate with the lattice via electron-phonon coupling. The increase in lattice temperature is manifested as a strain that can be measured with X-ray diffraction. The diffractedX-ray signal from the excited sample was measured using a streak camera. The amount of absorbed light was deduced by comparing X-ray diffraction measurements with simulations. It was found that 3.0(6)% of the radiation incident on the sample was absorbed by the nanowires, which cover 2.5% of the sample.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd