Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. Hamm, M. Lim, and R. M. Hochstrasser, “ Structure of the amide i band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102, 61236138 (1998).
2. S. T. Roberts, K. Ramasesha, and A. Tokmakoff, “ Structural rearrangements in water viewed through two-dimensional infrared spectroscopy,” Acc. Chem. Res. 42(9), 12391249 (2009).
3. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “ Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625628 (2005).
4. D. Abramavicius, B. Palmieri, D. V. Voronine, F. Sanda, and S. Mukamel, “ Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; quasiparticle versus supermolecule perspectives,” Chem. Rev. 109, 23502408 (2009).
5. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, USA, 1999).
6. J. Kim, V. M. Huxter, C. Curutchet, and G. D. Scholes, “ Measurement of ElectronElectron interactions and correlations using two-dimensional electronic double-quantum coherence spectroscopy,” J. Phys. Chem. A 113, 1212212133 (2009).
7. G. R. Fleming, G. D. Scholes, and Y.-C. Cheng, “ Quantum effects in biology,” Procedia Chem. 3(1), 3857 (2011).
8. E. Collini and G. D. Scholes, “ Coherent intrachain energy migration in a conjugated polymer at room temperature,” Science 323, 369373 (2009).
9. J. Murphy and C. Pellegrini, “ Introduction to the physics of the free electron laser,” in Frontiers of Particle Beams, edited by M. Month and S. Turner (Springer-Verlag, Berlin, 1988), Vol. 296, pp. 163219.
10. P. H. Bucksbaum, R. Coffee, N. Berrah, P. B. E. Arimondo, and C. Lin, “ The first atomic and molecular experiments at the linac coherent light source X-Ray free electron laser,” in Advances in Atomic, Molecular, and Optical Physics (Academic Press, 2011), Vol. 60, Chap. 5, pp. 239289.
11. J. Marangos, “ Introduction to the new science with x-ray free electron lasers,” Contemp. Phys. 52, 551569 (2011).
12. J. D. Biggs, Y. Zhang, D. Healion, and S. Mukamel, “ Two-dimensional stimulated resonance Raman spectroscopy of molecules with broadband x-ray pulses,” J. Chem. Phys. 136, 174117 (2012).
13. J. D. Biggs, Y. Zhang, D. Healion, and S. Mukamel, “ Multidimensional x-ray spectroscopy of valence and core excitations in cysteine,” J. Chem. Phys. 138, 144303 (2013).
14. D. Healion, J. D. Biggs, and S. Mukamel, “ Manipulating one- and two-dimensional stimulated-x-ray resonant-Raman signals in molecules by pulse polarizations,” Phys. Rev. A 86, 033429 (2012).
15. Y. Zhang, J. D. Biggs, D. Healion, N. Govind, and S. Mukamel, “ Core and valence excitations in resonant x-ray spectroscopy using restricted excitation window time-dependent density functional theory,” J. Chem. Phys. 137, 194306 (2012).
16. A. Salam, Molecular Quantum Electrodynamics: Theory of Long-Range Intermolecular Interactions (Wiley, Hoboken, NJ, 2010).
17. D. L. Andrews and T. Thirunamachandran, “ On three-dimensional rotational averages,” J. Chem. Phys. 67, 50265033 (1977).
18. D. Abramavicius and S. Mukamel, “ Coherent third-order spectroscopic probes of molecular chirality,” J. Chem. Phys. 122, 134305 (2005).
19. D. L. Andrews and M. J. Harlow, “ Phased and Boltzmann-weighted rotational averages,” Phys. Rev. A 29(5), 2796 (1984).
20. I. P. Mercer, Y. C. El-Taha, N. Kajumba, J. P. Marangos, J. W. G. Tisch, M. Gabrielsen, R. J. Cogdell, E. Springate, and E. Turcu, “ Instantaneous mapping of coherently coupled electronic transitions and energy transfers in a photosynthetic complex using angle-resolved coherent optical wave-mixing,” Phys. Rev. Lett. 102, 057402 (2009).
21. I. P. Mercer, “ Angle-resolved coherent optical wave mixing,” Phys. Rev. A 82, 043406 (2010).
22. I. Schweigert and S. Mukamel, “ Double-quantum-coherence attosecond X-ray spectroscopy of spatially separated, spectrally overlapping core-electron transitions,” Phys. Rev. A 78, 052509 (2008).
23. R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, USA, 1990).
24. Z. Zhang, K. L. Wells, M. T. Seidel, and H.-S. Tan, “ Fifth-order three-dimensional electronic spectroscopy using a Pump-Probe configuration,” J. Phys. Chem. B (published online).
25. Z. Zhang, K. L. Wells, and H.-S. Tan, “ Purely absorptive fifth-order three-dimensional electronic spectroscopy,” Opt. Lett. 37, 50585060 (2012).
26. Z. Zhang, K. L. Wells, E. W. J. Hyland, and H.-S. Tan, “ Phase-cycling schemes for pumpprobe beam geometry two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 550, 156161 (2012).
27. H.-S. Tan, “ Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy,” J. Chem. Phys. 129, 124501 (2008).
28. W. A. Hendrickson, “ Synchrotron crystallography,” Trends Biochem. Sci. 25, 637643 (2000).
29. M. Teplova, C. J. Wilds, Z. Wawrzak, V. Tereshko, Q. Du, N. Carrasco, Z. Huang, and M. Egli, “ Covalent incorporation of selenium into oligonucleotides for x-ray crystal structure determination via MAD: proof of principle,” Biochimie 84, 849858 (2002).
30. T. M. Vishwanatha, N. Narendra, B. Chattopadhyay, M. Mukherjee, and V. V. Sureshbabu, “ Synthesis of selenoxo peptides and oligoselenoxo peptides employing LiAlHSeH,” J. Org. Chem. 77, 26892702 (2012).
31. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, gaussian 09, Gaussian Inc. Wallingford, CT, 2009.
32. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, “ Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields,” J. Phys. Chem. 98, 1162311627 (1994).
33. R. A. Kendall, T. H. Dunning, and R. J. Harrison, “ Electron affinities of the first row atoms revisited. Systematic basis sets and wave functions,” J. Chem. Phys. 96, 67966806 (1992).
34. D. E. Woon and T. H. Dunning, “ Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon,” J. Chem. Phys. 98, 13581371 (1993).
35. G. H. Zschornack, Handbook of X-Ray Data, 1 ed. (Springer, 2007).
36. S. Mukamel and D. Abramavicius, “ Many-body approaches for simulating coherent nonlinear spectroscopies of electronic and vibrational excitons,” Chem. Rev. 104, 20732098 (2004).
37. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1964).

Data & Media loading...


Article metrics loading...



Nonlinear all-X-ray signals that involve large core-atom separation compared to the X-ray wavelengths may not be described by the dipole approximation since they contain additional phase factors. Expressions for the rotationally averaged 2D X-rayphoton echo signals from randomly oriented systems that take this position-dependent phase into account for arbitrary ratio between the core separation and the resonant wavelength are presented. Application is made to the Se K-edge of a selenium dipeptide system.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd