1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Ultrafast structural and electronic dynamics of the metallic phase in a layered manganite
Rent:
Rent this article for
Access full text Article
/content/aca/journal/sdy/1/1/10.1063/1.4835116
1.
1. K. S. Novoselov, “ Nobel lecture: Graphene: Materials in the flatland,” Rev. Mod. Phys. 83, 837 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.837
2.
2. M. B. Salamon and M. Jaime, “ The physics of manganites: Structure and transport,” Rev. Mod. Phys. 73, 583 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.583
3.
3. A. Damascelli, Z. Hussai, and Z. X. Shen, “ Angle-resolved photoemission studies of the cuprate superconductors,” Rev. Mod. Phys. 75, 473 (2003).
http://dx.doi.org/10.1103/RevModPhys.75.473
4.
4. A. M. Haghiri-Gosnet and J. P. Renard, “ CMR manganites: Physics, thin films and devices,” J. Phys. D: Appl. Phys. 36, R127 (2003).
http://dx.doi.org/10.1088/0022-3727/36/8/201
5.
5. M. Merz et al., “ Orbital degree of freedom in single-layered La1−xSr1+xMnO4: Doping- and temperature-dependent rearrangement of orbital states,” Phys. Rev. B 74, 184414 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.184414
6.
6. Y. Moritomo, H. Kuwahara, Y. Tomioka, and Y. Tokura, “ Pressure effects on charge-ordering transitions in Perovskite manganites,” Phys. Rev. B 55, 7549 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.7549
7.
7. C. Martin, A. Maignan, M. Hervieu, and B. Raveau, “ Magnetic phase diagrams of L1−xAxMnO3 manganites (L = Pr,Sm; A = Ca,Sr),” Phys. Rev. B 60, 12191 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.12191
8.
8. M. Rini et al., “ Time-resolved studies of phase transition dynamics in strongly correlated manganites,” J. Phys.: Conf. Ser. 148, 012013 (2009).
http://dx.doi.org/10.1088/1742-6596/148/1/012013
9.
9. D. Polli et al., “ Coherent orbital waves in the photo-induced insulator metal dynamics of a magnetoresistive manganite,” Nature Mater. 6, 643 (2007).
http://dx.doi.org/10.1038/nmat1979
10.
10. M. Rini et al., “ Control of the electronic phase of a manganite by mode-selective vibrational excitation,” Nature 449, 72 (2007).
http://dx.doi.org/10.1038/nature06119
11.
11. K. Miyasaka, M. Nakamura, Y. Ogimoto, H. Tamaru, and K. Miyano, “ Ultrafast photoinduced magnetic moment in a charge-orbital-ordered antiferromagnetic Nd0.5Sr0.5MnO3 thin film,” Phys. Rev. B 74, 012401 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.012401
12.
12. T. Ogasawara et al., “ Photoinduced spin dynamics in La0.6Sr0.4MnO3 observed by time-resolved magneto-optical Kerr spectroscopy,” Phys. Rev. B 68, 180407R (2003).
http://dx.doi.org/10.1103/PhysRevB.68.180407
13.
13. A. D. Averitt et al., “ Ultrafast conductivity dynamics in colossal magnetoresistance manganites,” Phys. Rev. Lett. 87, 017401 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.017401
14.
14. M. Matsubara et al., “ Ultrafast photoinduced insulator-ferromagnet transition in the perovskite manganite Gd0.55Sr0.45MnO3,” Phys. Rev. Lett. 99, 207401 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.207401
15.
15. M. Först et al., “ Driving magnetic order in a manganite by ultrafast lattice excitation,” Phys. Rev. B 84, 241104R (2011).
http://dx.doi.org/10.1103/PhysRevB.84.241104
16.
16. H. Ehrke et al., “ Photoinduced melting of antiferromagnetic order in La0.5Sr1.5MnO4 measured using ultrafast resonant soft X-ray diffraction,” Phys. Rev. Lett. 106, 217401 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.217401
17.
17. P. Beaud et al., “ Ultrafast structural phase transition driven by photoinduced melting of charge and orbital order,” Phys. Rev. Lett. 103, 155702 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.155702
18.
18. A. Caviezel et al., “ Femtosecond dynamics of the structural transition in mixed valence manganites,” Phys. Rev. B 86, 174105 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.174105
19.
19. H. J. Lee et al., “ Optically induced lattice dynamics probed with ultrafast x-ray diffraction,” Phys. Rev. B 77, 132301 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.132301
20.
20. I. Ichikawa et al., “ Transient photoinduced hidden phase in a manganite,” Nature Mater. 10, 101 (2011).
http://dx.doi.org/10.1038/nmat2929
21.
21. Z. A. Li et al., “ A checkerboard orbital-stripe phase and charge ordering transitions in Pr(SrxCa2x)Mn2O7 (0 < x < 0.45),” Europhys. Lett. 86, 67010 (2009).
http://dx.doi.org/10.1209/0295-5075/86/67010
22.
22. M. Eichberger et al., “ Snapshots of cooperative atomic motions in the optical suppression of charge density waves,” Nature 468, 799 (2010).
http://dx.doi.org/10.1038/nature09539
23.
23. P. Baum, D. S. Yang, and A. H. Zewail, “ 4D visualization of transitional structures in phase transformations by electron diffraction,” Science 318, 788 (2007).
http://dx.doi.org/10.1126/science.1147724
24.
24. N. Gedik, D. S. Yang, G. Logvenov, I. Bozovic, and A. H. Zewail, “ Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography,” Science 316, 425 (2007).
http://dx.doi.org/10.1126/science.1138834
25.
25. F. Carbone, O. H. Kwon, and A. H. Zewail, “ Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy,” Science 325, 181 (2009).
http://dx.doi.org/10.1126/science.1175005
26.
26. F. Carbone et al., “ EELS femtosecond resolved in 4D ultrafast electron microscopy,” Chem. Phys. Lett. 468, 107 (2009).
http://dx.doi.org/10.1016/j.cplett.2008.12.027
27.
27. F. Carbone, P. Musumeci, O. J. Luiten, and C. Hebert, “ A perspective on novel sources of ultrashort electron and X-ray pulses,” Chem. Phys. 392, 1 (2012).
http://dx.doi.org/10.1016/j.chemphys.2011.10.010
28.
28. Y. Tokunaga et al., “ Rotation of orbital stripes and the consequent charge-polarized state in bilayer manganites,” Nature Mater. 5, 937 (2006).
http://dx.doi.org/10.1038/nmat1773
29.
29. Q. A. Li et al., “ Reentrant orbital order and the true ground state of LaSr2MnO7,” Phys. Rev. Lett. 98, 167201 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.167201
30.
30. B. Barwick, H. S. Park, O. H. Kwon, J. S. Baskin, and A. H. Zewail, “ 4D imaging of transient structures and morphologies in ultrafast electron microscopy,” Science 322, 1227 (2008).
http://dx.doi.org/10.1126/science.1164000
31.
31. O. H. Kwon, B. Barwick, H. S. Park, J. S. Baskin, and A. H. Zewail, “ Nanoscale mechanical drumming visualized by 4D electron microscopy,” Nano Lett. 8, 3557 (2008).
http://dx.doi.org/10.1021/nl8029866
32.
32. R. F. Egerton, “ Electron energy-loss spectroscopy in theTEM,” Rep. Prog. Phys. 72, 016502 (2009).
http://dx.doi.org/10.1088/0034-4885/72/1/016502
33.
33. L. Piazza et al., “ Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology,” Chem. Phys. 423, 79 (2013).
http://dx.doi.org/10.1016/j.chemphys.2013.06.026
34.
34. T. J. Armstrong and A. V. Virkar, “ Performance of solid oxide fuel cells with LSGM-LSM composite cathodes,” J. Electrochem. Soc. 149, A1565 (2002).
http://dx.doi.org/10.1149/1.1517282
35.
35.See www.wien2k.at for information on this software.
36.
36. V. J. Keast, “ Ab initio calculations of plasmons and interband transitions in the low-loss electron energy-loss spectrum,” J. Electr. Spectr. Rel. Phenom. 143, 97 (2005).
http://dx.doi.org/10.1016/j.elspec.2004.04.005
37.
37.See www.tcd.ie/Physics/people/Cormac.McGuinness/Cowan/ for information on this software.
38.
38.See supplementary material at http://dx.doi.org/10.1063/1.4835116 for the details of the electronic structure calculations and the corresponding band diagram. [Supplementary Material]
39.
39. F. Carbone, “ The interplay between structure and orbitals in the chemical bonding of graphite,” Chem. Phys. Lett. 496, 291 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.07.074
http://aip.metastore.ingenta.com/content/aca/journal/sdy/1/1/10.1063/1.4835116
Loading
/content/aca/journal/sdy/1/1/10.1063/1.4835116
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/1/1/10.1063/1.4835116
2013-12-02
2014-12-20

Abstract

The transition between different states in manganites can be driven by various external stimuli. Controlling these transitions with light opens the possibility to investigate the microscopic path through which they evolve. We performed femtosecond (fs) transmission electron microscopy on a bi-layered manganite to study its response to ultrafast photoexcitation. We show that a photoinduced temperature jump launches a pressure wave that provokes coherent oscillations of the lattice parameters, detected via ultrafast electron diffraction. Their impact on the electronic structure are monitored via ultrafast electron energy loss spectroscopy, revealing the dynamics of the different orbitals in response to specific structural distortions.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/1/1/1.4835116.html;jsessionid=3hh3qr5gkqi8f.x-aip-live-02?itemId=/content/aca/journal/sdy/1/1/10.1063/1.4835116&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ultrafast structural and electronic dynamics of the metallic phase in a layered manganite
http://aip.metastore.ingenta.com/content/aca/journal/sdy/1/1/10.1063/1.4835116
10.1063/1.4835116
SEARCH_EXPAND_ITEM