Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Wark, R. Whitlock, A. Hauer, J. Swain, and P. Solone, Phys. Rev. B 35, 9391 (1987).
2. C. Rose-Petruck et al., Nature 398, 310 (1999).
3. A. Lindenberg et al., Phys. Rev. Lett. 84, 111 (2000).
4. D. A. Reis, M. F. DeCamp, P. H. Bucksbaum, R. Clarke, E. M. Dufresne, M. Hertlein, R. Merlin, R. Falcone, H. Kapteyn, M. Murnane, J. Larsson, T. Missalla, and J. S. Wark, Phys. Rev. Lett. 86, 3072 (2001).
5. F. Schotte, M. Lim, T. Jackson, A. Smirnov, J. Soman, J. Olson, G. Phillips, M. Wulff, and P. Anfinrud, Science 300, 1944 (2003).
6. F. Schotte, H. S. Cho, V. R. I. Kaila, H. Kamikubo, N. Dashdorj, E. R. Henry, T. J. Graber, R. Henning, M. Wulff, G. Hummer, M. Kataoka, and P. A. Anfinrud, Proc. Natl. Acad. Sci. 109, 19256 (2012).
7. R. Schoenlein, S. Chattopadhyay, H. Chong, T. Glover, P. Heimann, C. Shank, A. Zholents, and M. Zolotorev, Science 287, 2237 (2000).
8. Z. Chang, A. Rundquist, J. Zhou, M. Murnane, H. Kapteyn, X. Liu, B. Shan, J. Liu, L. Niu, M. Gong, and X. Zhang, Appl. Phys. Lett. 69, 133 (1996).
9. J. Larsson, Z. Chang, E. Judd, P. Schuck, R. Falcone, P. Heimann, H. Padmore, H. Kapteyn, P. Bucksbaum, M. Murnane, R. Lee, A. Machacek, J. Wark, X. Liu, and B. Shan, Opt. Lett. 22, 1012 (1997).
10. A. Zholents, P. Heimann, M. Zolotorev, and J. Byrd, Nucl. Instrum. Methods Phys. A 425, 385 (1999).
11. A. Cavalieri, D. Fritz, S. Lee, P. Bucksbaum, D. Reis, J. Rudati, D. Mills, P. Fuoss, G. Stephenson, C. Kao, D. Siddons, D. Lowney, A. MacPhee, D. Weinstein, R. Falcone, R. Pahl, J. Als-Nielsen, C. Blome, S. Dusterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, T. Tschentscher, J. Schneider, O. Hignette, F. Sette, K. Sokolowski-Tinten, H. Chapman, R. Lee, T. Hansen, O. Synnergren, J. Larsson, S. Techert, J. Sheppard, J. Wark, M. Bergh, C. Caleman, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R. Akre, E. Bong, P. Emma, P. Krejcik, J. Arthur, S. Brennan, K. Gaffney, A. Lindenberg, K. Luening, and J. Hastings, Phys. Rev. Lett. 94, 114801 (2005).
12. W. Leemans, R. Schoenlein, P. Volfbeyn, A. Chin, T. Glover, P. Balling, M. Zolotorev, K. Kim, S. Chattopadhyay, and C. Shank, Phys. Rev. Lett. 77, 4182 (1996).
13. A. Grigoriev, D.-H. Do, D. Kim, C.-B. Eom, P. Evans, B. Adams, and E. Dufresne, Appl. Phys. Lett. 89, 021109 (2006).
14. P. Bucksbaum and R. Merlin, Solid State Commun. 111, 535 (1999).
15. M. DeCamp, D. Reis, P. Bucksbaum, B. Adams, J. Caraher, R. Clarke, C. Conover, E. Dufresne, R. Merlin, V. Stoica, and J. Wahlstrand, Nature 413, 825 (2001).
16. P. Sondhauss, J. Larsson, M. Harbst, G. Naylor, A. Plech, K. Scheidt, O. Synnergren, M. Wulff, and J. Wark, Phys. Rev. Lett. 94, 125509 (2005).
17. M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. Woo, D. Kim, M. Woerner, and T. Elsaesser, Science 306, 5702 (2004).
18. M. Trigo, Y. Sheu, D. A. Arms, S. Ghimire, R. Goldman, E. Landahl, R. Merlin, E. Peterson, M. Reason, and D. Reis, Phys. Rev. Lett. 101, 025505 (2008).
19. P. Gaal, D. Schick, M. Herzog, A. Bojahr, R. Shayduk, J. Goldshteyn, H. Navirian, W. Leitenberger, I. Vrejoiu, Kh. M. Wulff, and M. Bargheer, Appl. Phys. Lett. 101, 243106 (2012).
20. M. Herzog, A. Bojahr, J. Goldshteyn, W. Leitenberger, I. Vrejoiu, D. Khakhulin, M. Wulff, R. Shayduk, P. Gaal, and Barg, Appl. Phys. Lett. 100, 094101 (2012).
21. J. Wark, A. Allen, P. Ansbro, P. Bucksbaum, Z. Chang, M. F. DeCamp, R. Falcone, P. Heimann, S. Johnson, I. Kang, H. Kapteyn, J. Larsson, R. Lee, A. Lindenberg, R. Merlin, T. Missalla, G. Naylor, H. Padmore, D. Reis, K. Scheidt, A. Sjoegren, P. Sondhauss, and M. Wulff, Proc. SPIE 4143, 26 (2001).
22. J. Larsson, A. Allen, P. Bucksbaum, R. Falcone, A. Lindenberg, G. Naylor, T. Missalla, D. Reis, K. Scheidt, A. Sjogren, P. Sondhauss, M. Wulff, and J. Wark, Appl. Phys. A: Mater. Sci. Process. 75, 467 (2002).
23. Y. Gao, Z. Chen, Z. Bond, A. Loether, L. Howard, S. LeMar, S. White, A. Watts, B. Walker, and M. DeCamp, Phys. Rev. B 88, 014302 (2013).
24. E. Dufresne, B. Adams, D. Arms, M. Chollet, E. Landahl, Y. Li, D. Walko, and J. Wang, in Proceedings of the SRI2009, 10th International Conference on Radiation Instrumentation, edited by K. N. S. W. R. Garrett and I. Gentle (AIP, Melville, NY, 2010).
25. M. Nicoul, U. Shymanovich, A. Tarasevitch, D. von der Linde, and K. Sokolowski-Tinten, Appl. Phys. Lett. 98, 191902 (2011).
26. Y. Gao and M. F. DeCamp, Appl. Phys. Lett. 100, 191903 (2012).
27. S. Brorson, J. Fujimoto, and E. Ippen, Phys. Rev. Lett. 59, 1962 (1987).
28. C. R. Wie, T. A. Tombrello, and J. T. Vreeland, J. Appl. Phys. 59, 3743 (1986).
29. C. Thomsen et al., Phys. Rev. B 34, 4129 (1986).
30. A. Lindenberg, I. Kang, S. Johnson, R. Falcone, P. Heimann, Z. Chang, R. Lee, and J. Wark, Opt. Lett. 27, 869 (2002).
31. N. Del Fatti, C. Voisin, D. Christofilos, F. Vallee, and C. Flytzanis, J. Phys. Chem. A 104, 4321 (2000).

Data & Media loading...


Article metrics loading...



Designing an efficient and simple method for modulating the intensity of x-ray radiation on a picosecond time-scale has the potential to produce ultrafast pulses of hard x-rays. In this work, we generate a tunable transient superlattice, in an otherwise perfect crystal, by photoexciting a metal film on a crystalline substrate. The resulting transient strain has amplitudes approaching 1%, wavevectors greater than , and lifetimes approaching 1 ns. This method has the potential to generate isolated picosecond x-ray bursts with scattering efficiencies in excess of 10%.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd