Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Graber, S. Anderson, H. Brewer, Y. S. Chen, H. S. Cho, N. Dashdorj, R. W. Henning, I. Kosheleva, G. Macha, M. Meron, R. Pahl, Z. Ren, S. Ruan, F. Schotte, V. Srajer, P. J. Viccaro, F. Westferro, P. Anfinrud, and K. Moffat, “BioCARS: A synchrotron resource for time-resolved X-ray science,” J. Synchrotron Radiat. 18, 658670 (2011).
2. M. Schmidt, V. Srajer, R. Henning, H. Ihee, N. Purwar, J. Tenboer, and S. Tripathi, “Protein energy landscapes determined by five-dimensional crystallography,” Acta Crystallogr. D 69, 25342542 (2013).
3. M. Schmidt, “Mix and inject, reaction initiation by diffusion for time-resolved macromolecular crystallography,” Adv. Condens. Matter Phys. 2013, 110.
4. M. Schmidt, K. Achterhold, V. Prusakov, and F. G. Parak, “Protein dynamics of a beta-sheet protein,” Eur. Biophys. J. 38, 687700 (2009).
5. F. Parak, E. W. Knapp, and D. Kucheida,“Protein dynamics. Mossbauer spectroscopy on deoxymyoglobin crystals,” J. Mol. Biol. 161, 177194 (1982).
6. F. Schotte, H. S. Cho, V. R. Kaila, H. Kamikubo, N. Dashdorj, E. R. Henry, T. J. Graber, R. Henning, M. Wulff, G. Hummer, M. Kataoka, and P. A. Anfinrud, “Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography,” Proc. Natl. Acad. Sci. U. S. A. 109, 1925619261 (2012).
7. H. C. Poon, M. Schmidt, and D. K. Saldin, “Extraction of fast changes in the structure of a disordered ensemble of photoexcited biomolecules,” Adv. Condens. Matter Phys. 2013, 750371.
8. J. I. Steinfeld, J. S. Francisco, and W. L. Hase, Chemical Kinetics and Dynamics, 2nd ed. (Prentience Hall, 1985).
9. Y. O. Jung, J. H. Lee, J. Kim, M. Schmidt, K. Moffat, V. Srajer, and H. Ihee, “Volume-conserving trans-cis isomerization pathways in photoactive yellow protein visualized by picosecond X-ray crystallography,” Nat. Chem. 5, 212220 (2013).
10. U. Hensen, O. F. Lange, and H. Grubmuller, “Estimating absolute configurational entropies of macromolecules: The minimally coupled subspace approach,” PloS one 5, e9179 (2010).
11. J. Schlitter, “Estimation of absolute and relative entropies of macromolecules using the covariance-matrix,” Chem. Phys. Lett. 215, 617621 (1993).
12. A. A. Polyansky, A. Kuzmanic, M. Hlevnjak, and B. Zagrovic, “On the contribution of linear correlations to quasi-harmonic conformational entropy in proteins,” J. Chem. Theo. Comput. 8, 38203829 (2012).
13. F. Parak and E. W. Knapp, “A consistent picture of protein dynamics,” Proc. Natl. Acad. Sci. U. S. A. 81, 70887092 (1984).
14. M. Akke, R. Bruschweiler, and A. G. Palmer, “Nmr order parameters and free-energy - an analytical approach and its application to cooperative ca2+ binding by calbindin-D(9k),” J. Am. Chem. Soc. 115, 98329833 (1993).
15. J. Fitter, “A measure of conformational entropy change during thermal protein unfolding using neutron spectroscopy,” Biophys. J. 84, 39243930 (2003).
16. M. Karplus, T. Ichiye, and B. M. Pettitt, “Configurational entropy of native proteins,” Biophys. J. 52, 10831085 (1987).
17. R. M. Stroud and J. S. Finer-Moore, “Conformational dynamics along an enzymatic reaction pathway: Thymidylate synthase,” "the movie”, Biochemistry 42, 239247 (2003).
18. I. Schlichting, J. Berendzen, K. Chu, A. M. Stock, S. A. Maves, D. E. Benson, B. M. Sweet, D. Ringe, G. A. Petsko, and S. G. Sligar, “The catalytic pathway of cytochrome P450cam at atomic resolution,” Science 287, 16151622 (2000).
19. R. M. Daniel, R. V. Dunn, J. L. Finney, and J. C. Smith, “The role of dynamics in enzyme activity,” Annu. Rev. Biophys. Biomol. Struct. 32, 6992 (2003).
20. C. N. Pace, B. A. Shirley, M. McNutt, and K. Gajiwala, “Forces contributing to the conformational stability of proteins,” Faseb. J. 10, 7583 (1996).
21. K. Ghosh and K. A. Dill, “Computing protein stabilities from their chain lengths,” Proc. Natl. Acad. Sci. U. S. A. 106, 1064910654 (2009).
22. A. D. Robertson and K. P. Murphy, “Protein structure and the energetics of protein stability,” Chem. Rev. 97, 12511267 (1997).
23. D. W. Li, S. A. Showalter, and R. Bruschweiler, “Entropy localization in proteins,” J. Phys. Chem. B 114, 1603616044 (2010).
24. M. E. van Brederode, T. Gensch, W. D. Hoff, K. J. Hellingwerf, and S. E. Braslavsky, “Photoinduced volume change and energy storage associated with the early transformations of the photoactive yellow protein from Ectothiorhodospira halophila,” Biophys. J. 68, 11011109 (1995).
25. M. E. Van Brederode, W. D. Hoff, I. H. Van Stokkum, M. L. Groot, and K. J. Hellingwerf, “Protein folding thermodynamics applied to the photocycle of the photoactive yellow protein,” Biophys. J. 71, 365380 (1996).
26. F. G. Parak, K. Achterhold, S. Croci, and M. Schmidt, “A physical picture of protein dynamics and conformational changes,” J. Biol. Phys. 33, 371387 (2007).
27. K. Takeshita, Y. Imamoto, M. Kataoka, F. Tokunaga, and M. Terazima, “Themodynamic and transport properties of intermediate states of the photocyclic reaction of photoactive yellow protein,” Biochemistry 41, 30373048 (2002).
28. F. Parak, K. Achterhold, C. Keppler, U. vonBurck, W. Potzel, P. SchindelMann, E. W. Knapp, B. Melchers, R. Ruffer, A. I. Chumakov, and A. Q. R. Baron, “The myoglobin phonon-spectrum obtained from X-ray scattering analyzed by Mossbauer effect,” Prog. Biophys. Mol. Bio. 65, Pa322Pa322 (1996).
29. W. Doster, S. Cusack, and W. Petry, “Dynamical transition of myoglobin revealed by inelastic neutron-scattering,” Nature 337, 754756 (1989).
30. F. G. Parak, K. Achterhold, M. Schmidt, V. Prusakov, and S. Croci, “Protein dynamics on different timescales,” J. Non-Cryst. Solids 352, 43714378 (2006).
31. R. H. Austin, K. W. Beeson, L. Eisenstein, H. Frauenfelder, and I. C. Gunsalus, “Dynamics of ligand binding to myoglobin,” Biochemistry 14, 53555373 (1975).
32. H. Frauenfelder, G. Chen, J. Berendzen, P. W. Fenimore, H. Jansson, B. H. McMahon, I. R. Stroe, J. Swenson, and R. D. Young, “A unified model of protein dynamics,” Proc. Natl. Acad. Sci. U. S. A. 106, 51295134 (2009).
33. R. D. Young, H. Frauenfelder, and P. W. Fenimore, “Mossbauer effect in proteins,” Phys. Rev. Lett. 107, 158102 (2011).
34. H. Frauenfelder, F. Parak, and R. D. Young, “Conformational substrates in proteins,” Ann. Rev. Biophys. Biophys. Chem. 17, 451479 (1988).
35. K. Achterhold, C. Keppler, U. vanBurck, W. Potzel, P. Schindelmann, E. W. Knapp, B. Melchers, A. I. Chumakov, A. Q. R. Baron, R. Ruffer, and F. Parak, “Temperature dependent inelastic X-ray scattering of synchrotron radiation on myoglobin analyzed by the Mossbauer effect,” Eur. Biophys. J. Biophys. 25, 4346 (1996).
36. B. Melchers, E. W. Knapp, F. Parak, L. Cordone, A. Cupane, and M. Leone, “Structural fluctuations of myoglobin from normal-modes, Mossbauer, Raman, and absorption spectroscopy,” Biophys. J. 70, 20922099 (1996).
37. S. H. Chong, Y. Joti, A. Kidera, N. Go, A. Ostermann, A. Gassmann, and F. Parak, “Dynamical transition of myoglobin in a crystal: comparative studies of X–ray crystallography and Mossbauer spectroscopy,” Eur. Biophys. J. 30, 319329 (2001).
38. C. Tetreau, L. Mouawad, S. Murail, P. Duchambon, Y. Blouquit, and D. Lavalette, “Disentangling ligand migration and heme pocket relaxation in cytochrome P450cam,” Biophys. J. 88, 12501263 (2005).
39. D. Lavalette, C. Tetreau, and L. Mouawad, “Ligand migration and escape pathways in haem proteins,” Biochem. Soc. Trans. 34, 975978 (2006).
40. J. L. Martin, A. Migus, C. Poyart, Y. Lecarpentier, R. Astier, and A. Antonetti, “Femtosecond photolysis of CO-ligated protoheme and hemoproteins: Appearance of deoxy species with a 350-fsec time constant,” Proc. Natl. Acad. Sci. U. S. A. 80, 173177 (1983).
41. G. Groenhof, M. Bouxin-Cademartory, B. Hess, S. P. De Visser, H. J. Berendsen, M. Olivucci, A. E. Mark, and M. A. Robb, “Photoactivation of the photoactive yellow protein: why photon absorption triggers a trans-to-cis Isomerization of the chromophore in the protein,” J. Am. Chem. Soc. 126, 42284233 (2004).
42. G. Groenhof, M. F. Lensink, H. J. Berendsen, and A. E. Mark, “Signal transduction in the photoactive yellow protein. II. Proton transfer initiates conformational changes,” Proteins 48, 212219 (2002).
43. G. Groenhof, M. F. Lensink, H. J. Berendsen, J. G. Snijders, and A. E. Mark, “Signal transduction in the photoactive yellow protein. I. Photon absorption and the isomerization of the chromophore,” Proteins 48, 202211 (2002).
44. G. Groenhof, L. V. Schafer, M. Boggio-Pasqua, H. Grubmuller, and M. A. Robb, “Arginine52 controls the photoisomerization process in photoactive yellow protein,” J. Am. Chem. Soc. 130, 32503251 (2008).
45. S. Anderson, S. Crosson, and K. Moffat, “Short hydrogen bonds in photoactive yellow protein,” Acta Crystallogr D 60, 10081016 (2004).
46. S. Anderson, V. Srajer, R. Pahl, S. Rajagopal, F. Schotte, P. Anfinrud, M. Wulff, and K. Moffat, “Chromophore conformation and the evolution of tertiary structural changes in photoactive yellow protein,” Structure 12, 10391045 (2004).
47. M. Schmidt, R. Pahl, V. Srajer, S. Anderson, Z. Ren, H. Ihee, S. Rajagopal, and K. Moffat, “Protein kinetics: Structures of intermediates and reaction mechanism from time-resolved x-ray data,” Proc. Natl. Acad. Sci. U. S. A. 101, 47994804 (2004).
48. H. Ihee, S. Rajagopal, V. Srajer, R. Pahl, S. Anderson, M. Schmidt, F. Schotte, P. A. Anfinrud, M. Wulff, and K. Moffat, “Visualizing reaction pathways in photoactive yellow protein from nanoseconds to seconds,” Proc. Natl. Acad. Sci. U. S. A. 102, 71457150 (2005).
49. C. N. Lincoln, A. E. Fitzpatrick, and J. J. van Thor, “Photoisomerisation quantum yield and non-linear cross-sections with femtosecond excitation of the photoactive yellow protein,” Phys. Chem. Chem. Phys. 14, 1575215764 (2012).
50. I. H. van Stokkum, D. S. Larsen, and R. van Grondelle, “Global and target analysis of time—resolved spectra,” Biochim. Biophys. Acta 1657, 82104 (2004).
51. T. E. Meyer, “Isolation and characterization of soluble cytochromes, ferredoxins and other chromophoric proteins from the halophilic phototrophic bacterium Ectothiorhodospira halophila,” Biochim. Biophys. Acta 806, 175183 (1985).
52. T. E. Meyer, G. Tollin, T. P. Causgrove, P. Cheng, and R. E. Blankenship, “Picosecond decay kinetics and quantum yield of fluorescence of the photoactive yellow protein from the halophilic purple phototrophic bacterium, ectothiorhodospira-halophila,” Biophys. J. 59, 988991 (1991).
53. W. D. Hoff, I. H. van Stokkum, H. J. van Ramesdonk, M. E. van Brederode, A. M. Brouwer, J. C. Fitch, T. E. Meyer, R. van Grondelle, and K. J. Hellingwerf, “Measurement and global analysis of the absorbance changes in the photocycle of the photoactive yellow protein from Ectothiorhodospira halophila,” Biophys. J. 67, 16911705 (1994).
54. L. Ujj, S. Devanathan, T. E. Meyer, M. A. Cusanovich, G. Tollin, and G. H. Atkinson, “New photocycle intermediates in the photoactive yellow protein from Ectothiorhodospira halophila: picosecond transient absorption spectroscopy,” Biophys. J. 75, 406412 (1998).
55. R. Kort, H. Vonk, X. Xu, W. D. Hoff, W. Crielaard, and K. J. Hellingwerf, “Evidence for trans-cis isomerization of the p-coumaric acid chromophore as the photochemical basis of the photocycle of photoactive yellow protein,” Febs. Lett. 382, 7378 (1996).
56. A. Xie, W. D. Hoff, A. R. Kroon, and K. J. Hellingwerf, “Glu46 donates a proton to the 4-hydroxycinnamate anion chromophore during the photocycle of photoactive yellow protein,” Biochemistry 35, 1467114678 (1996).
57. G. E. Borgstahl, D. R. Williams, and E. D. Getzoff, “1.4 A structure of photoactive yellow protein, a cytosolic photoreceptor: unusual fold, active site, and chromophore,” Biochemistry 34, 62786287 (1995).
58. U. K. Genick, G. E. Borgstahl, K. Ng, Z. Ren, C. Pradervand, P. M. Burke, V. Srajer, T. Y. Teng, W. Schildkamp, D. E. McRee, K. Moffat, and E. D. Getzoff, “Structure of a protein photocycle intermediate by millisecond time-resolved crystallography,” Science 275, 14711475 (1997).
59. M. Schmidt, S. Rajagopal, Z. Ren, and K. Moffat, “Application of singular value decomposition to the analysis of time-resolved macromolecular x-ray data,” Biophys. J. 84, 21122129 (2003).
60. S. Rajagopal, M. Schmidt, S. Anderson, H. Ihee, and K. Moffat, “Analysis of experimental time-resolved crystallographic data by singular value decomposition,” Acta crystallogr. D 60, 860871 (2004).
61. L. Mendonca, F. Hache, P. Changenet-Barret, P. Plaza, H. Chosrowjan, S. Taniguchi, and Y. Imamoto, “Ultrafast carbonyl motion of the photoactive yellow protein chromophore probed by femtosecond circular dichroism,” J. Am. Chem. Soc. 135, 1463714643 (2013).
62. J. Liu, A. Yabushita, S. Taniguchi, H. Chosrowjan, Y. Imamoto, K. Sueda, N. Miyanaga, and T. Kobayashi, “Ultrafast time-resolved pump-probe spectroscopy of PYP by a sub-8 fs pulse laser at 400 nm,” J. Phys. Chem. B 117, 48184826 (2013).
63. A. Xie, L. Kelemen, J. Hendriks, B. J. White, K. J. Hellingwerf, and W. D. Hoff, “Formation of a new buried charge drives a large-amplitude protein quake in photoreceptor activation,” Biochemistry 40, 15101517 (2001).
64. S. Yeremenko, I. H. van Stokkum, K. Moffat, and K. J. Hellingwerf, “Influence of the crystalline state on photoinduced dynamics of photoactive yellow protein studied by ultraviolet-visible transient absorption spectroscopy,” Biophys. J. 90, 42244235 (2006).
65. K. Ng, E. D. Getzoff, and K. Moffat, “Optical studies of a bacterial photoreceptor protein, photoactive yellow protein, in single-crystals,” Biochemistry 34, 879890 (1995).
66. H. Eyring, “The activated complex in chemical reaction,” J. Chem. Phys. 3, 107115 (1935).
67. P. Hanggi, P. Talkner, and M. Borkovec, “Reaction-rate theory—50 years after kramers,” Rev. Mod. Phys. 62, 251341 (1990).
68. H. S. Chung and W. A. Eaton, “Single-molecule fluorescence probes dynamics of barrier crossing,” Nature 502, 685 (2013).
69. D. Bourgeois, B. Vallone, A. Arcovito, G. Sciara, F. Schotte, P. A. Anfinrud, and M. Brunori, “Extended subnanosecond structural dynamics of myoglobin revealed by Laue crystallography,” Proc. Natl. Acad. Sci. U. S. A. 103, 49244929 (2006).
70. M. Schmidt, K. Nienhaus, R. Pahl, A. Krasselt, S. Anderson, F. Parak, G. U. Nienhaus, and V. Srajer, “Ligand migration pathway and protein dynamics in myoglobin: A time-resolved crystallographic study on L29W MbCO,” Proc. Natl. Acad. Sci. U. S. A. 102, 1170411709 (2005).
71. M. H. Lim, T. A. Jackson, and P. A. Anfinrud, “Nonexponential protein relaxation—Dynamics of conformational change in myoglobin,” Proc. Natl. Acad. Sci. U. S. A. 90, 58015804 (1993).
72. K. Moritsugu and J. C. Smith, “Langevin model of the temperature and hydration dependence of protein vibrational dynamics,” J. Phys. Chem. B 109, 1218212194 (2005).
73. M. Schmidt, T. Graber, R. Henning, and V. Srajer, “Five-dimensional crystallography,” Acta Crystallogr. Sect. A 66, 198206 (2010).
74. P. Schwander, D. Giannakis, C. H. Yoon, and A. Ourmazd, “The symmetries of image formation by scattering. II. Applications,” Opt. Express 20, 1282712849 (2012).
75. K. Pande, P. Schwander, M. Schmidt, and D. K. Saldin, “Deducing fast electron density changes in randomly orientated uncrystallized biomolecules in a pump-probe experiment,” Philos. Trans. R. Soc. B (in press).
76. D. K. Saldin, H. C. Poon, V. L. Shneerson, M. Howells, H. N. Chapman, R. A. Kirian, K. E. Schmidt, and J. C. H. Spence, “Beyond small-angle x-ray scattering: Exploiting angular correlations,” Phys. Rev. B 81, 174105 (2010).
77. H. Liu, B. K. Poon, D. K. Saldin, J. C. Spence, and P. H. Zwart, “Three-dimensional single-particle imaging using angular correlations from X-ray laser data,” Acta Crystallogr. Sect. A 69, 365373 (2013).
78. H. C. Poon, P. Schwander, M. Uddin, and D. K. Saldin, “Fiber diffraction without fibers,” Phys. Rev. Lett. 110, 265505 (2013).
79. D. K. Saldin, H. C. Poon, P. Schwander, M. Uddin, and M. Schmidt, “Reconstructing an icosahedral virus from single-particle diffraction experiments,” Opt. Express 19, 1731817335 (2011).
80. D. K. Saldin, V. L. Shneerson, R. Fung, and A. Ourmazd, “Structure of isolated biomolecules obtained from ultrashort x-ray pulses: Exploiting the symmetry of random orientations,” J. Phys. Condens. Matter 21, 134014 (2009).
81. R. Fung, V. Shneerson, D. K. Saldin, and A. Ourmazd, “Structure from fleeting illumination of faint spinning objects in flight,” Nat. Phys. 5, 6467 (2009).
82. G. Rubinstenn, G. W. Vuister, F. A. Mulder, P. E. Dux, R. Boelens, K. J. Hellingwerf, and R. Kaptein, “Structural and dynamic changes of photoactive yellow protein during its photocycle in solution,” Nat. Struct. Biol. 5, 568570 (1998).
83. P. L. Ramachandran, J. E. Lovett, P. J. Carl, M. Cammarata, J. H. Lee, Y. O. Jung, H. Ihee, C. R. Timmel, and J. J. van Thor, “The short-lived signaling state of the photoactive yellow protein photoreceptor revealed by combined structural probes,” J. Am. Chem. Soc. 133, 93959404 (2011).
84. R. A. Kirian, K. E. Schmidt, X. Wang, R. B. Doak, and J. C. Spence, “Signal, noise, and resolution in correlated fluctuations from snapshot small-angle x-ray scattering,” Phys. Rev. E 84, 011921 (2011).
85. R. A. Kirian, “Structure determination through correlated fluctuations in x-ray scattering,” J. Phys. B At. Mol. Opt. Phys. 45, 223001 (2012).
86. M. Porro, L. Andricek, S. Aschauer, M. Bayer, J. Becker, L. Bombelli, A. Castoldi, G. De Vita, I. Diehl, F. Erdinger, S. Facchinetti, C. Fiorini, P. Fischer, T. Gerlach, H. Graafsma, C. Guazzoni, K. Hansen, P. Kalavakuru, H. Klar, A. Kugel, P. Lechner, M. Lemke, G. Lutz, M. Manghisoni, D. Mezza, D. Muntefering, U. Pietsch, E. Quartieri, M. Randall, V. Re, C. Reckleben, C. Sandow, J. Soldat, L. Struder, J. Szymanski, G. Weidenspointner, and C. B. Wunderer, “Development of the depfet sensor with signal compression: A large format x-ray imager with mega-frame readout capability for the European XFEL,” IEEE Trans. Nucl. Sci. 59, 33393351 (2012).
87. P. Nissen, J. Hansen, N. Ban, P. B. Moore, and T. A. Steitz, “The structural basis of ribosome activity in peptide bond synthesis,” Science 289, 920930 (2000).
88. N. Ban, P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz, “The complete atomic structure of the large ribosomal subunit at 2.4 angstrom resolution,” Science 289, 905920 (2000).
89. J. Harms, F. Schluenzen, R. Zarivach, A. Bashan, S. Gat, I. Agmon, H. Bartels, F. Franceschi, and A. Yonath, “High resolution structure of the large ribosomal subunit from a mesophilic Eubacterium,” Cell 107, 679688 (2001).
90. M. Selmer, C. M. Dunham, F. V. Murphy, A. Weixlbaumer, S. Petry, A. C. Kelley, J. R. Weir, and V. Ramakrishnan, “Structure of the 70S ribosome complexed with mRNA and tRNA,” Science 313, 19351942 (2006).
91. A. Yonath, “Antibiotics targeting ribosomes: Resistance, selectivity, synergism, and cellular regulation,” Annu. Rev. Biochem. 74, 649679 (2005).
92. S. R. Adams and R. Y. Tsien, “Controlling Cell Chemistry with Caged Compounds,” Annu. Rev. Physiol. 55, 755784 (1993).

Data & Media loading...


Article metrics loading...



With recent technological advances at synchrotrons [Graber , J. Synchrotron Radiat. , 658–670 (2011)], it is feasible to rapidly collect time-resolved crystallographic data at multiple temperature settings [Schmidt , Acta Crystallogr. D , 2534–2542 (2013)], from which barriers of activation can be extracted. With the advent of fourth generation X-ray sources, new opportunities emerge to investigate structure and dynamics of biological macromolecules in real time [M. Schmidt, Adv. Condens. Matter Phys. , 1–10] in crystals and potentially from single molecules in random orientation in solution [Poon , Adv. Condens. Matter Phys. , 750371]. Kinetic data from time-resolved experiments on short time-scales must be interpreted in terms of chemical kinetics [Steinfeld , , 2nd ed. (Prentience Hall, 1985)] and tied to existing time-resolved experiments on longer time-scales [Schmidt , Acta Crystallogr. D , 2534–2542 (2013); Jung , Nat. Chem. , 212–220 (2013)]. With this article, we will review and outline steps that are required to routinely determine the energetics of reactions in biomolecules in crystal and solution with newest X-ray sources. In eight sections, we aim to describe concepts and experimental details that may help to inspire new approaches to collect and interpret these data.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd