Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aca/journal/sdy/1/2/10.1063/1.4871751
1.
1. E. Amis and J. Hinton, Solvent Effects on Chemical Phenomena (Academic Press, New York, 1973).
2.
2. J. C. Owrutsky, D. Raftery, and R. M. Hochstrasser, Annu. Rev. Phys. Chem. 45, 519 (1994).
http://dx.doi.org/10.1146/annurev.pc.45.100194.002511
3.
3. N. Schwentner, C. Bressler, W. Lawrence, J. Xu, and M. Chergui, Chem. Phys. 189, 205 (1994).
http://dx.doi.org/10.1016/0301-0104(94)00283-5
4.
4. F. Messina et al., Angew. Chem., Int. Ed. 52, 7043 (2013).
http://dx.doi.org/10.1002/anie.201304256
5.
5. S. J. Greaves et al., Science 331, 1423 (2011).
http://dx.doi.org/10.1126/science.1197796
6.
6. M. Shirom and G. Stein, J. Chem. Phys. 55, 3379 (1971).
http://dx.doi.org/10.1063/1.1676588
7.
7. M. Shirom and G. Stein, J. Chem. Phys. 55, 3372 (1971).
http://dx.doi.org/10.1063/1.1676587
8.
8. P. Rentzepis, R. Jones, and J. Jortner, Chem. Phys. Lett. 15, 480 (1972).
http://dx.doi.org/10.1016/0009-2614(72)80353-1
9.
9. J.-C. Mialocq, J. Sutton, and P. Goujon, J. Chem. Phys. 72, 6338 (1980).
http://dx.doi.org/10.1063/1.439157
10.
10. S. Pommeret et al., Chem. Phys. Lett. 288, 833 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00371-6
11.
11. N. A. Anderson, K. Hang, J. B. Asbury, and T. Lian, Chem. Phys. Lett. 329, 386 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)01046-0
12.
12. V. Lenchenkov, J. Kloepfer, V. Vilchiz, and S. E. Bradforth, Chem. Phys. Lett. 342, 277 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00585-1
13.
13. L. Moggi, F. Bolletta, V. Balzani, and F. Scandola, J. Inorg. Nucl. Chem. 28, 2589 (1966).
http://dx.doi.org/10.1016/0022-1902(66)80383-4
14.
14. O. Horváth and K. L. Stevenson, Charge Transfer Photochemistry of Coordination Compounds (Wiley-VCH, 1993).
15.
15. M. Fuller, K. Lebrocq, E. Leslie, and I. Wilson, Aust. J. Chem. 39, 1411 (1986).
http://dx.doi.org/10.1071/CH9861411
16.
16. K. B. Reddy and R. Van Eldik, Inorg. Chem. 30, 596 (1991).
http://dx.doi.org/10.1021/ic00004a003
17.
17. Z. Bradić, D. Pavlovic, I. Murati, and S. Asperger, J. Chem. Soc., Dalton Trans. 1974, 344.
http://dx.doi.org/10.1039/dt9740000344
18.
18. D. A. Estrin et al., Inorg. Chem. 35, 3897 (1996).
http://dx.doi.org/10.1021/ic951202c
19.
19. E. F. Aziz, M. H. Rittmann-Frank, K. M. Lange, S. Bonhommeau, and M. Chergui, Nature Chemistry 2, 853 (2010).
http://dx.doi.org/10.1038/NCHEM.768
20.
20. M. I. Finston and H. G. Drickamer, J. Phys. Chem. 85, 50 (1981).
http://dx.doi.org/10.1021/j150601a013
21.
21. F. P. Rotzinger, Chem. Rev. 105, 2003 (2005).
http://dx.doi.org/10.1021/cr030715v
22.
22. H. Bolvin, J. Phys. Chem. A 102, 7525 (1998).
http://dx.doi.org/10.1021/jp982759r
23.
23. M. Chergui, Acta Cryst. A66, 229239 (2010).
http://dx.doi.org/10.1107/S010876730904968X
24.
24. T. Penfold, C. Milne, and M. Chergui, Adv. Chem. Phys. 153, 1 (2013).
http://dx.doi.org/10.1002/9781118571767.ch1
25.
25. F. Lima et al., Rev. Sci. Instrum. 82, 063111 (2011).
http://dx.doi.org/10.1063/1.3600616
26.
26. F. Neese et al., ORCA—An Ab initio, Density Functional and Semiempirical Program Package (Max Planck Institute for Bioinorganic Chemistry, 2012).
27.
27. M. Reiher, O. Salomon, and B. A. Hess, Theor. Chem. Acc. 107, 48 (2001).
http://dx.doi.org/10.1007/s00214-001-0300-3
28.
28. S. Sinnecker, A. Rajendran, A. Klamt, M. Diedenhofen, and F. Neese, J. Phys. Chem. A 110, 2235 (2006).
http://dx.doi.org/10.1021/jp056016z
29.
29. Y. Joly, Phys. Rev. B 63, 125120 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.125120
30.
30. O. Bunău and Y. Joly, J. Phys.: Condens. Matter 21, 345501 (2009).
http://dx.doi.org/10.1088/0953-8984/21/34/345501
31.
31. S. DeBeer-George, T. Petrenko, and F. Neese, J. Phys. Chem. A 112, 12936 (2008).
http://dx.doi.org/10.1021/jp803174m
32.
32. G. Capano et al., Chem. Phys. Lett. 580, 179 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.06.060
33.
33. F. Lima et al., Phys. Chem. Chem. Phys. 16, 1617 (2014).
http://dx.doi.org/10.1039/c3cp53683a
34.
34. S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314, 291 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)01149-5
35.
35. S. Debeer-George, T. Petrenko, and F. Neese, Inorg. Chim. Acta 361, 965 (2008).
http://dx.doi.org/10.1016/j.ica.2007.05.046
36.
36. A. Bianconi, M. Dell'Ariccia, P. J. Durham, and J. B. Pendry, Phys. Rev. B 26, 6502 (1982).
http://dx.doi.org/10.1103/PhysRevB.26.6502
37.
37. M. Obashi, Jpn. J. Appl. Phys., Part 1 17, 563 (1978).
http://dx.doi.org/10.1143/JJAP.17.563
38.
38. K. Hayakawa et al., J. Am. Chem. Soc. 126, 15618 (2004).
http://dx.doi.org/10.1021/ja045561v
39.
39. T. Lee, Y. Jiang, C. G. Rose-Petruck, and F. Benesch, J. Chem. Phys. 122, 084506 (2005).
http://dx.doi.org/10.1063/1.1852455
40.
40. T. Penfold et al., J. Chem. Phys. 138, 014104 (2013).
http://dx.doi.org/10.1063/1.4772766
41.
41. M. Reinhard, “Ultrafast x-ray and 2-dimensional UV spectroscopic Studies of hexacyanoferrate ions in solution,” Ph.D. thesis (Ecole Polytechnique Fédérale de Lausanne, Lausanne, 2013).
42.
42. C. Bressler, R. Abela, and M. Chergui, Z. Kristallogr. 223, 308 (2008).
http://dx.doi.org/10.1524/zkri.2008.0030
43.
43. M. Reinhard, G. Auböck, and M. Chergui, “Ultrafast 2D UV spectroscopy of photoaquation of aqueous hexacyanoferrate(II) ions,” (to be published).
44.
44. R. Hocking et al., J. Am. Chem. Soc. 128, 10442 (2006).
http://dx.doi.org/10.1021/ja061802i
45.
45. T. E. Westre et al., J. Am. Chem. Soc. 119, 6297 (1997).
http://dx.doi.org/10.1021/ja964352a
46.
46. W. Zhang, M. Ji, Z. Sun, and K. J. Gaffney, J. Am. Chem. Soc. 134, 2581 (2012).
http://dx.doi.org/10.1021/ja207306t
47.
47. F. Messina, O. Braem, A. Cannizzo, and M. Chergui, Nat. Commun. 4, 2119 (2013).
http://dx.doi.org/10.1038/ncomms3119
48.
48. O. Bräm, F. Messina, A. M. El-Zohry, A. Cannizzo, and M. Chergui, Chem. Phys. 393, 51 (2012).
http://dx.doi.org/10.1016/j.chemphys.2011.11.022
49.
49. See supplementary material at http://dx.doi.org/10.1063/1.4871751 for the ground state iron K-edge and the UV-visible spectra of both complexes, a transient spectrum over an extended energy range of aqueous ferrous cyanide after 266 nm photoexcitation and the effect of the photolysis yield on the transient spectrum presented in Fig. 2(a). [Supplementary Material]
http://aip.metastore.ingenta.com/content/aca/journal/sdy/1/2/10.1063/1.4871751
Loading
/content/aca/journal/sdy/1/2/10.1063/1.4871751
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/1/2/10.1063/1.4871751
2014-04-17
2016-09-27

Abstract

We present a picosecond Fe K-edge absorption study of photoexcited ferrous and ferric hexacyanide in water under 355 and 266 nm excitation. Following 355 nm excitation, the transient spectra for the ferrous and ferric complexes exhibit a red shift of the edge reflecting an increased electron density at the Fe atom. For the former, an enhanced pre-edge transition is also observed. These observations are attributed to the aquated [Fe(CN)OH]3− species, based on quantum chemical calculations which also provide structural parameters. Upon 266 nm excitation of the ferric complex, a transient reminiscent of the aquated species is observed (appearance of a pre-edge feature and red shift of the edge) but it is different from that obtained under 355 nm excitation. This points to a new reaction channel occurring through an intermediate state lying between these two excitation energies. Finally, 266 nm excitation of the ferrous species is dominated by the photooxidation channel with formation of the ferric complex as main photoproduct. However, we observe an additional minor photoproduct, which is identical to the 266 nm generated photoproduct of the ferric species, suggesting that under our experimental conditions, the pump pulse photooxidises the ferrous complex and re-excites the primary ferric photoproduct.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/1/2/1.4871751.html;jsessionid=NTc0T3h9luZy77OVctOFpUAc.x-aip-live-06?itemId=/content/aca/journal/sdy/1/2/10.1063/1.4871751&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy

Most read this month

Article
content/aca/journal/sdy
Journal
5
3
Loading

Most cited this month

+ More - Less
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=sd.aip.org/1/2/10.1063/1.4871751&pageURL=http://scitation.aip.org/content/aca/journal/sdy/1/2/10.1063/1.4871751'
Right1,Right2,Right3,