Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. H. von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, and M. Kammler, “ Femtosecond x-ray measurement of ultrafast melting and large acoustic transients,” Phys. Rev. Lett. 87, 225701 (2001).
2. A. M. Lindenberg, I. Kang, S. L. Johnson, T. Missalla, P. A. Heimann, Z. Chang, J. Larsson, P. H. Bucksbaum, H. C. Kapteyn, H. A. Padmore, R. W. Lee, J. S. Wark, and R. W. Falcone, “ Time-resolved x-ray diffraction from coherent phonons during a laser-induced phase transition,” Phys. Rev. Lett. 84, 111114 (2000).
3. D. M. Fritz, D. A. Reis, B. Adams, R. A. Akre, J. Arthur, C. Blome, P. H. Bucksbaum, A. L. Cavalieri, S. Engemann, S. Fahy, R. W. Falcone, P. H. Fuoss, K. J. Gaffney, M. J. George, J. Hajdu, M. P. Hertlein, P. B. Hillyard, M. H. von Hoegen, M. Kammler, J. Kaspar, R. Kienberger, P. Krejcik, S. H. Lee, A. M. Lindenberg, B. McFarland, D. Meyer, T. Montagne, E. D. Murray, A. Nelson, M. Nicoul, R. Pahl, J. Rudati, H. Schlarb, D. P. Siddons, K. Sokolowski-Tinten, T. Tschentscher, D. von der Linde, and J. B. Hastings, “ Ultrafast bond softening in bismuth: Mapping a solid's interatomic potential with x-rays,” Science 315, 633636 (2007).
4. M. Trigo, M. Fuchs, J. Chen, M. P. Jiang, M. Cammarata, S. Fahy, D. M. Fritz, K. Gaffney, S. Ghimire, A. Higginbotham, S. L. Johnson, M. E. Kozina, J. Larsson, H. Lemke, A. M. Lindenberg, G. Ndabashimiye, F. Quirin, K. Sokolowski-Tinten, C. Uher, G. Wang, J. S. Wark, D. Zhu, and D. A. Reis, “ Fourier-transform inelastic x-ray scattering from time- and momentum-dependent phonon-phonon correlations,” Nat. Phys. 9, 790794 (2013).
5. M. Highland, B. C. Grundrum, Y. K. Koh, R. S. Averback, D. G. Cahill, V. C. Elarde, J. J. Coleman, D. A. Walko, and E. C. Landahl, “ Ballistic-phonon heat conduction at the nanoscale as revealed by time-resolved x-ray diffraction and time-domain thermoreflectance,” Phys. Rev. B 76, 075337 (2007).
6. C. Laulhé, M. Cammarata, M. Servol, R. J. D. Miller, M. Hada, and S. Ravy, “ Impact of laser on bismuth thin-films,” Eur. Phys. J.: Spec. Top. 222, 12771285 (2013).
7. H. A. Navirian, M. Herzog, J. Goldshteyn, W. Leitenberger, I. Vrejoiu, D. Khakhulin, M. Wulff, R. Shayduk, P. Gaal, and M. Bargheer, “ Shortening x-ray pulses for pump-probe experiments at synchrotrons,” J. Appl. Phys. 109, 126104 (2011).
8. F. A. Lima, C. J. Milne, D. C. V. Amarasinghe, M. H. Rittmann-Frank, R. M. van der Veen, M. Reinhard, V.-T. Pham, S. Karlsson, S. L. Johnson, D. Grolimund, C. Borca, T. Huthwelker, M. Janousch, F. van Mourik, R. Abela, and M. Chergui, “ A high-repetition rate scheme for synchrotron-based picosecond laser pump/x-ray probe experiments on chemical and biological systems in solution,” Rev. Sci. Instrum. 82, 063111 (2011).
9. A. M. March, A. Stickrath, G. Doumy, E. P. Kanter, B. Krässig, S. H. Southworth, K. Attenkofer, C. A. Kurtz, L. X. Chen, and L. Young, “ Development of high-repetition-rate laser pump/x-ray probe methodologies for synchrotron facilities,” Rev. Sci. Instrum. 82, 073110 (2011).
10. R. Shayduk, H. Navirian, W. Leitenberger, J. Goldshteyn, I. Vrejoiu, M. Weinelt, P. Gaal, M. Herzog, C. von Korff Schmising, and M. Bargheer, “ Nanoscale heat transport studied by high-resolution time-resolved x-ray diffraction,” New J. Phys. 13, 093032 (2011).
11. E. M. Dufresne, B. Adams, M. Chollet, R. Harder, Y. Li, H. Wen, S. J. Leake, L. Beitra, X. Huang, and I. K. Robinson, “ A technique for high-frequency laser-pump x-ray probe experiments at the aps,” Nucl. Instrum. Methods Phys. Res., Sect. A 649, 191193 (2011).
12. H. A. Navirian, R. Shayduk, W. Leitenberger, J. Goldshteyn, P. Gaal, and M. Bargheer, “ Synchrotron-based ultrafast x-ray diffraction at high repetition rates,” Rev. Sci. Instrum. 83, 063303 (2012).
13. H. A. Navirian, D. Schick, P. Gaal, W. Leitenberger, R. Shayduk, and M. Bargheer, “ Thermoelastic study of nanolayered structures using time-resolved x-ray diffraction at high repetition rate,” Appl. Phys. Lett. 104, 021906 (2014).
14. K. Haldrup, G. Vankó, W. Gawelda, A. Galler, G. Doumy, A. M. March, E. P. Kanter, A. Bordage, A. Dohn, T. B. van Driel, K. S. Kjær, H. T. Lemke, S. E. Canton, J. Uhlig, V. Sundström, L. Young, S. H. Southworth, M. M. Nielsen, and C. Bressler, “ Guest-host interactions investigated by time-resolved x-ray spectroscopies and scattering at MHz rates: Solvation dynamics and photoinduced spin transition in aqueous ,” J. Phys. Chem. A 116, 98789887 (2012).
15. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “ Nanoscale thermal transport,” J. Appl. Phys. 93, 793818 (2003).
16. M. N. Luckyanova, J. Garg, K. Esfarfani, A. Jandle, M. T. Bulsara, A. J. Schmidt, A. J. Minnich, S. Chen, M. S. Dresselhaus, Z. Ren, E. A. Fitzgerald, and G. Chen, “ Coherent phonon heat conduction in superlattices,” Science 338, 936939 (2012).
17. D. A. Walko, Y.-M. Sheu, M. Trigo, and D. A. Reis, “ Thermal transport in thin films measured by time-resolved, grazing incidence x-ray diffraction,” J. Appl. Phys. 110, 102203 (2011).
18. Y. M. Sheu, M. Trigo, Y. J. Chien, C. Uher, D. A. Arms, E. R. Peterson, D. A. Walko, E. C. Landahl, J. Chen, S. Ghimire, and D. A. Reis, “ Kapitza conductance of bi/sapphire interface studied by depth- and time-resolved x-ray diffraction,” Solid State Commun. 151, 826829 (2011).
19. S. L. Johnson, P. Beaud, C. J. Milne, F. S. Krasniqi, E. S. Zilstra, M. E. Garcia, M. Kaiser, D. Grolimund, R. Abela, and G. Ingold, “ Nanoscale depth-resolved coherent femtosecond motion in laser-excited bismuth,” Phys. Rev. Lett. 100, 155501 (2008).
20. D. Daranciang, M. J. Highland, H. Wen, S. M. Young, N. C. Brandt, H. Y. Hwang, M. Vattilana, M. Nicoul, F. Quirin, J. Goodfellow, T. Qi, I. Grinberg, D. M. Fritz, M. Cammarata, D. Zhu, H. T. Lemke, D. A. Walko, E. M. Dufresne, Y. Li, J. Larsson, D. A. Reis, K. Sokolowski-Tinten, K. A. Nelson, A. M. Rappe, P. H. Fuoss, G. B. Stephenson, and A. M. Lindenberg, “ Ultrafast photovoltaic response in ferroelectric nanolayers,” Phys. Rev. Lett. 108, 087601 (2012).
21. S. M. Young, F. Zheng, and A. M. Rappe, “ First-principles calculation of the bulk photovoltaic effect in bismuth ferrite,” Phys. Rev. Lett. 109, 236601 (2012).
22. L. Y. Chen, J. C. Yang, C. W. Luo, C. W. Laing, K. H. Wu, J.-Y. Lin, T. M. Uen, J. Y. Juang, Y. H. Chu, and T. Kobayashi, “ Ultrafast photoinduced mechanical strain in epitaxial BiFeO3 thin films,” Appl. Phys. Lett. 101, 041902 (2012).
23. S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C.-H. Yang, M. D. Rossell, P. Yu, Y.-H. Chu, J. F. Scott, J. W. Ager III, L. W. Martin, and R. Ramesh, “ Above-bandgap voltages from ferroelectric photovoltaic devices,” Nat. Nanotechnol. 5, 143147 (2010).
24. H. Wen, P. Chen, M. P. Cosgriff, D. A. Walko, J. H. Lee, C. Adamo, R. D. Schaller, J. F. Ihlefeld, E. M. Dufresne, D. G. Schlom, P. G. Evans, J. W. Freeland, and Y. Li, “ Electronic origin of ultrafast photoinduced strain in BiFeO3,” Phys. Rev. Lett. 110, 037601 (2013).
25. B. Kundys, M. Viret, D. Colson, and D. O. Kundys, “ Light-induced size changes in BiFeO3 crystals,” Nature Mater. 9, 803805 (2010).
26. D. Schick, A. Bojahr, M. Herzog, P. Gaal, I. Vrejoiu, and M. Bargheer, “ Following strain-induced mosaicity changes of ferroelectric thin films by ultrafast reciprocal space mapping,” Phys. Rev. Lett. 110, 095502 (2013).
27. D. Schick, M. Herzog, H. Wen, P. Chen, C. Adamo, P. Gaal, D. G. Schlom, P. G. Evans, Y. Li, and M. Bargheer, “ Localized electric charge carriers generate ultrafast inhomogenous strain in the multiferroic BiFeO3,” Phys. Rev. Lett. 112, 097602 (2014).
28. X. Huang, J. Safranek, J. Corbett, Y. Nosochkov, J. Sebek, and A. Terebilo, “ Low alpha mode for spear3,” in Proc. PAC07 (2007), pp. 13081310.
29. M. Abo-Bakr, J. Feikes, K. Holldack, P. Kuske, W. B. Peatman, U. Schade, G. Wüstefeld, and H.-W. Hübers, “ Brilliant, coheren far-infrared (THz) synchrotron radiation,” Phys. Rev. Lett. 90, 094801 (2003).
30. P. Kraft, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eikenberry, B. Henrich, I. Johnson, A. Mozzanica, C. M. Schleputz, P. R. Willmott, and B. Schmitt, “ Performance of single-photon-counting pilatus detector modules,” J. Synchrotron Radiat. 16, 368375 (2009).
31. J. F. Ihlefeld, N. J. Podraza, Z. K. Liu, R. C. Rai, X. Xu, T. Heeg, Y. B. Chen, J. Li, R. W. Collins, J. L. Musfeldt, X. Q. Pan, J. Schubert, R. Ramesh, and D. G. Schlom, “ Optical band gap of BiFeO3 grown by molecular beam epitaxy,” Appl. Phys. Lett. 92, 142908 (2008).
32. S. K. Pandey, A. R. James, R. Raman, S. N. Chatterjee, A. Goyal, C. Prakash, and T. C. Goel, “ Structural, ferroelectric, and optical properties of pzt thin films,” Physica B 369, 135142 (2005).
33. T. Ejdrup, H. T. Lemke, K. Haldrup, T. N. Nielsen, D. A. Arms, D. A. Walko, A. Miceli, E. C. Landahl, E. M. Dufresne, and M. M. Nielsen, “ Picosecond time-resolved laser pump/x-ray probe experiments using a gated single-photon-counting area detector,” J. Synchrotron Radiat. 16, 387390 (2009).
34. See supplementary material at for derivation of this result. [Supplementary Material]
35. B. Krenzer, A. Janzen, P. Zhou, D. von der Linde, and M. H. von Hoegen, “ Thermal boundary conductance in heterostructures studied by ultrafast electron diffraction,” New J. Phys. 8, 190 (2006).

Data & Media loading...


Article metrics loading...



We report measurements of the transient structural response of weakly photo-excited thin films of BiFeO, Pb(Zr,Ti)O, and Bi and time-scales for interfacial thermal transport. Utilizing picosecond x-ray diffraction at a 1.28 MHz repetition rate with time resolution extending down to 15 ps, transient changes in the diffraction angle are recorded. These changes are associated with photo-induced lattice strains within nanolayer thin films, resolved at the part-per-million level, corresponding to a shift in the scattering angle three orders of magnitude smaller than the rocking curve width and changes in the interlayer lattice spacing of fractions of a femtometer. The combination of high brightness, repetition rate, and stability of the synchrotron, in conjunction with high time resolution, represents a novel means to probe atomic-scale, near-equilibrium dynamics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd