1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Measurement of transient atomic displacements in thin films with picosecond and femtometer resolution
Rent:
Rent this article for
Access full text Article
    + View Affiliations - Hide Affiliations
    Affiliations:
    1 Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
    2 Department of Applied Physics, Stanford University, Stanford, California 94305, USA
    3 Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
    4 Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
    5 Department of Chemistry, Stanford University, Stanford, California 94305, USA
    6 Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
    7 Department of Materials Science and Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, USA
    8 Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
    Struct. Dyn. 1, 034301 (2014); http://dx.doi.org/10.1063/1.4875347
/content/aca/journal/sdy/1/3/10.1063/1.4875347
1.
1. K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. H. von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, and M. Kammler, “ Femtosecond x-ray measurement of ultrafast melting and large acoustic transients,” Phys. Rev. Lett. 87, 225701 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.225701
2.
2. A. M. Lindenberg, I. Kang, S. L. Johnson, T. Missalla, P. A. Heimann, Z. Chang, J. Larsson, P. H. Bucksbaum, H. C. Kapteyn, H. A. Padmore, R. W. Lee, J. S. Wark, and R. W. Falcone, “ Time-resolved x-ray diffraction from coherent phonons during a laser-induced phase transition,” Phys. Rev. Lett. 84, 111114 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.111
3.
3. D. M. Fritz, D. A. Reis, B. Adams, R. A. Akre, J. Arthur, C. Blome, P. H. Bucksbaum, A. L. Cavalieri, S. Engemann, S. Fahy, R. W. Falcone, P. H. Fuoss, K. J. Gaffney, M. J. George, J. Hajdu, M. P. Hertlein, P. B. Hillyard, M. H. von Hoegen, M. Kammler, J. Kaspar, R. Kienberger, P. Krejcik, S. H. Lee, A. M. Lindenberg, B. McFarland, D. Meyer, T. Montagne, E. D. Murray, A. Nelson, M. Nicoul, R. Pahl, J. Rudati, H. Schlarb, D. P. Siddons, K. Sokolowski-Tinten, T. Tschentscher, D. von der Linde, and J. B. Hastings, “ Ultrafast bond softening in bismuth: Mapping a solid's interatomic potential with x-rays,” Science 315, 633636 (2007).
http://dx.doi.org/10.1126/science.1135009
4.
4. M. Trigo, M. Fuchs, J. Chen, M. P. Jiang, M. Cammarata, S. Fahy, D. M. Fritz, K. Gaffney, S. Ghimire, A. Higginbotham, S. L. Johnson, M. E. Kozina, J. Larsson, H. Lemke, A. M. Lindenberg, G. Ndabashimiye, F. Quirin, K. Sokolowski-Tinten, C. Uher, G. Wang, J. S. Wark, D. Zhu, and D. A. Reis, “ Fourier-transform inelastic x-ray scattering from time- and momentum-dependent phonon-phonon correlations,” Nat. Phys. 9, 790794 (2013).
http://dx.doi.org/10.1038/nphys2788
5.
5. M. Highland, B. C. Grundrum, Y. K. Koh, R. S. Averback, D. G. Cahill, V. C. Elarde, J. J. Coleman, D. A. Walko, and E. C. Landahl, “ Ballistic-phonon heat conduction at the nanoscale as revealed by time-resolved x-ray diffraction and time-domain thermoreflectance,” Phys. Rev. B 76, 075337 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.075337
6.
6. C. Laulhé, M. Cammarata, M. Servol, R. J. D. Miller, M. Hada, and S. Ravy, “ Impact of laser on bismuth thin-films,” Eur. Phys. J.: Spec. Top. 222, 12771285 (2013).
http://dx.doi.org/10.1140/epjst/e2013-01922-0
7.
7. H. A. Navirian, M. Herzog, J. Goldshteyn, W. Leitenberger, I. Vrejoiu, D. Khakhulin, M. Wulff, R. Shayduk, P. Gaal, and M. Bargheer, “ Shortening x-ray pulses for pump-probe experiments at synchrotrons,” J. Appl. Phys. 109, 126104 (2011).
http://dx.doi.org/10.1063/1.3601057
8.
8. F. A. Lima, C. J. Milne, D. C. V. Amarasinghe, M. H. Rittmann-Frank, R. M. van der Veen, M. Reinhard, V.-T. Pham, S. Karlsson, S. L. Johnson, D. Grolimund, C. Borca, T. Huthwelker, M. Janousch, F. van Mourik, R. Abela, and M. Chergui, “ A high-repetition rate scheme for synchrotron-based picosecond laser pump/x-ray probe experiments on chemical and biological systems in solution,” Rev. Sci. Instrum. 82, 063111 (2011).
http://dx.doi.org/10.1063/1.3600616
9.
9. A. M. March, A. Stickrath, G. Doumy, E. P. Kanter, B. Krässig, S. H. Southworth, K. Attenkofer, C. A. Kurtz, L. X. Chen, and L. Young, “ Development of high-repetition-rate laser pump/x-ray probe methodologies for synchrotron facilities,” Rev. Sci. Instrum. 82, 073110 (2011).
http://dx.doi.org/10.1063/1.3615245
10.
10. R. Shayduk, H. Navirian, W. Leitenberger, J. Goldshteyn, I. Vrejoiu, M. Weinelt, P. Gaal, M. Herzog, C. von Korff Schmising, and M. Bargheer, “ Nanoscale heat transport studied by high-resolution time-resolved x-ray diffraction,” New J. Phys. 13, 093032 (2011).
http://dx.doi.org/10.1088/1367-2630/13/9/093032
11.
11. E. M. Dufresne, B. Adams, M. Chollet, R. Harder, Y. Li, H. Wen, S. J. Leake, L. Beitra, X. Huang, and I. K. Robinson, “ A technique for high-frequency laser-pump x-ray probe experiments at the aps,” Nucl. Instrum. Methods Phys. Res., Sect. A 649, 191193 (2011).
http://dx.doi.org/10.1016/j.nima.2011.01.050
12.
12. H. A. Navirian, R. Shayduk, W. Leitenberger, J. Goldshteyn, P. Gaal, and M. Bargheer, “ Synchrotron-based ultrafast x-ray diffraction at high repetition rates,” Rev. Sci. Instrum. 83, 063303 (2012).
http://dx.doi.org/10.1063/1.4727872
13.
13. H. A. Navirian, D. Schick, P. Gaal, W. Leitenberger, R. Shayduk, and M. Bargheer, “ Thermoelastic study of nanolayered structures using time-resolved x-ray diffraction at high repetition rate,” Appl. Phys. Lett. 104, 021906 (2014).
http://dx.doi.org/10.1063/1.4861873
14.
14. K. Haldrup, G. Vankó, W. Gawelda, A. Galler, G. Doumy, A. M. March, E. P. Kanter, A. Bordage, A. Dohn, T. B. van Driel, K. S. Kjær, H. T. Lemke, S. E. Canton, J. Uhlig, V. Sundström, L. Young, S. H. Southworth, M. M. Nielsen, and C. Bressler, “ Guest-host interactions investigated by time-resolved x-ray spectroscopies and scattering at MHz rates: Solvation dynamics and photoinduced spin transition in aqueous ,” J. Phys. Chem. A 116, 98789887 (2012).
http://dx.doi.org/10.1021/jp306917x
15.
15. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “ Nanoscale thermal transport,” J. Appl. Phys. 93, 793818 (2003).
http://dx.doi.org/10.1063/1.1524305
16.
16. M. N. Luckyanova, J. Garg, K. Esfarfani, A. Jandle, M. T. Bulsara, A. J. Schmidt, A. J. Minnich, S. Chen, M. S. Dresselhaus, Z. Ren, E. A. Fitzgerald, and G. Chen, “ Coherent phonon heat conduction in superlattices,” Science 338, 936939 (2012).
http://dx.doi.org/10.1126/science.1225549
17.
17. D. A. Walko, Y.-M. Sheu, M. Trigo, and D. A. Reis, “ Thermal transport in thin films measured by time-resolved, grazing incidence x-ray diffraction,” J. Appl. Phys. 110, 102203 (2011).
http://dx.doi.org/10.1063/1.3661164
18.
18. Y. M. Sheu, M. Trigo, Y. J. Chien, C. Uher, D. A. Arms, E. R. Peterson, D. A. Walko, E. C. Landahl, J. Chen, S. Ghimire, and D. A. Reis, “ Kapitza conductance of bi/sapphire interface studied by depth- and time-resolved x-ray diffraction,” Solid State Commun. 151, 826829 (2011).
http://dx.doi.org/10.1016/j.ssc.2011.03.022
19.
19. S. L. Johnson, P. Beaud, C. J. Milne, F. S. Krasniqi, E. S. Zilstra, M. E. Garcia, M. Kaiser, D. Grolimund, R. Abela, and G. Ingold, “ Nanoscale depth-resolved coherent femtosecond motion in laser-excited bismuth,” Phys. Rev. Lett. 100, 155501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.155501
20.
20. D. Daranciang, M. J. Highland, H. Wen, S. M. Young, N. C. Brandt, H. Y. Hwang, M. Vattilana, M. Nicoul, F. Quirin, J. Goodfellow, T. Qi, I. Grinberg, D. M. Fritz, M. Cammarata, D. Zhu, H. T. Lemke, D. A. Walko, E. M. Dufresne, Y. Li, J. Larsson, D. A. Reis, K. Sokolowski-Tinten, K. A. Nelson, A. M. Rappe, P. H. Fuoss, G. B. Stephenson, and A. M. Lindenberg, “ Ultrafast photovoltaic response in ferroelectric nanolayers,” Phys. Rev. Lett. 108, 087601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.087601
21.
21. S. M. Young, F. Zheng, and A. M. Rappe, “ First-principles calculation of the bulk photovoltaic effect in bismuth ferrite,” Phys. Rev. Lett. 109, 236601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.236601
22.
22. L. Y. Chen, J. C. Yang, C. W. Luo, C. W. Laing, K. H. Wu, J.-Y. Lin, T. M. Uen, J. Y. Juang, Y. H. Chu, and T. Kobayashi, “ Ultrafast photoinduced mechanical strain in epitaxial BiFeO3 thin films,” Appl. Phys. Lett. 101, 041902 (2012).
http://dx.doi.org/10.1063/1.4734512
23.
23. S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C.-H. Yang, M. D. Rossell, P. Yu, Y.-H. Chu, J. F. Scott, J. W. Ager III, L. W. Martin, and R. Ramesh, “ Above-bandgap voltages from ferroelectric photovoltaic devices,” Nat. Nanotechnol. 5, 143147 (2010).
http://dx.doi.org/10.1038/nnano.2009.451
24.
24. H. Wen, P. Chen, M. P. Cosgriff, D. A. Walko, J. H. Lee, C. Adamo, R. D. Schaller, J. F. Ihlefeld, E. M. Dufresne, D. G. Schlom, P. G. Evans, J. W. Freeland, and Y. Li, “ Electronic origin of ultrafast photoinduced strain in BiFeO3,” Phys. Rev. Lett. 110, 037601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.037601
25.
25. B. Kundys, M. Viret, D. Colson, and D. O. Kundys, “ Light-induced size changes in BiFeO3 crystals,” Nature Mater. 9, 803805 (2010).
http://dx.doi.org/10.1038/nmat2807
26.
26. D. Schick, A. Bojahr, M. Herzog, P. Gaal, I. Vrejoiu, and M. Bargheer, “ Following strain-induced mosaicity changes of ferroelectric thin films by ultrafast reciprocal space mapping,” Phys. Rev. Lett. 110, 095502 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.095502
27.
27. D. Schick, M. Herzog, H. Wen, P. Chen, C. Adamo, P. Gaal, D. G. Schlom, P. G. Evans, Y. Li, and M. Bargheer, “ Localized electric charge carriers generate ultrafast inhomogenous strain in the multiferroic BiFeO3,” Phys. Rev. Lett. 112, 097602 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.097602
28.
28. X. Huang, J. Safranek, J. Corbett, Y. Nosochkov, J. Sebek, and A. Terebilo, “ Low alpha mode for spear3,” in Proc. PAC07 (2007), pp. 13081310.
29.
29. M. Abo-Bakr, J. Feikes, K. Holldack, P. Kuske, W. B. Peatman, U. Schade, G. Wüstefeld, and H.-W. Hübers, “ Brilliant, coheren far-infrared (THz) synchrotron radiation,” Phys. Rev. Lett. 90, 094801 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.094801
30.
30. P. Kraft, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eikenberry, B. Henrich, I. Johnson, A. Mozzanica, C. M. Schleputz, P. R. Willmott, and B. Schmitt, “ Performance of single-photon-counting pilatus detector modules,” J. Synchrotron Radiat. 16, 368375 (2009).
http://dx.doi.org/10.1107/S0909049509009911
31.
31. J. F. Ihlefeld, N. J. Podraza, Z. K. Liu, R. C. Rai, X. Xu, T. Heeg, Y. B. Chen, J. Li, R. W. Collins, J. L. Musfeldt, X. Q. Pan, J. Schubert, R. Ramesh, and D. G. Schlom, “ Optical band gap of BiFeO3 grown by molecular beam epitaxy,” Appl. Phys. Lett. 92, 142908 (2008).
http://dx.doi.org/10.1063/1.2901160
32.
32. S. K. Pandey, A. R. James, R. Raman, S. N. Chatterjee, A. Goyal, C. Prakash, and T. C. Goel, “ Structural, ferroelectric, and optical properties of pzt thin films,” Physica B 369, 135142 (2005).
http://dx.doi.org/10.1016/j.physb.2005.08.024
33.
33. T. Ejdrup, H. T. Lemke, K. Haldrup, T. N. Nielsen, D. A. Arms, D. A. Walko, A. Miceli, E. C. Landahl, E. M. Dufresne, and M. M. Nielsen, “ Picosecond time-resolved laser pump/x-ray probe experiments using a gated single-photon-counting area detector,” J. Synchrotron Radiat. 16, 387390 (2009).
http://dx.doi.org/10.1107/S0909049509004658
34.
34.See supplementary material at http://dx.doi.org/10.1063/1.4875347 for derivation of this result. [Supplementary Material]
35.
35. B. Krenzer, A. Janzen, P. Zhou, D. von der Linde, and M. H. von Hoegen, “ Thermal boundary conductance in heterostructures studied by ultrafast electron diffraction,” New J. Phys. 8, 190 (2006).
http://dx.doi.org/10.1088/1367-2630/8/9/190
http://aip.metastore.ingenta.com/content/aca/journal/sdy/1/3/10.1063/1.4875347
Loading
/content/aca/journal/sdy/1/3/10.1063/1.4875347
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aca/journal/sdy/1/3/10.1063/1.4875347
2014-05-06
2014-07-25

Abstract

We report measurements of the transient structural response of weakly photo-excited thin films of BiFeO, Pb(Zr,Ti)O, and Bi and time-scales for interfacial thermal transport. Utilizing picosecond x-ray diffraction at a 1.28 MHz repetition rate with time resolution extending down to 15 ps, transient changes in the diffraction angle are recorded. These changes are associated with photo-induced lattice strains within nanolayer thin films, resolved at the part-per-million level, corresponding to a shift in the scattering angle three orders of magnitude smaller than the rocking curve width and changes in the interlayer lattice spacing of fractions of a femtometer. The combination of high brightness, repetition rate, and stability of the synchrotron, in conjunction with high time resolution, represents a novel means to probe atomic-scale, near-equilibrium dynamics.

Loading

Full text loading...

/deliver/fulltext/aca/journal/sdy/1/3/1.4875347.html;jsessionid=3zrpla5ptboo.x-aip-live-02?itemId=/content/aca/journal/sdy/1/3/10.1063/1.4875347&mimeType=html&fmt=ahah&containerItemId=content/aca/journal/sdy
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Measurement of transient atomic displacements in thin films with picosecond and femtometer resolution
http://aip.metastore.ingenta.com/content/aca/journal/sdy/1/3/10.1063/1.4875347
10.1063/1.4875347
SEARCH_EXPAND_ITEM