Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. Emma, R. Akre, J. Arthur, R. Bionta, J. Bostedt, C. Bostedt, A. Brachmann, P. Bucksbaum, R. Coffee, F.-J. Decker, Y. Ding, D. Dowell, S. Edstrom, A. Fisher, J. Frisch, S. Gilevich, J. Hastings, G. Hays, P. Hering, Z. Huang, R. Iverson, H. Loos, M. Messerschmidt, A. Miahnahri, S. Moeller, H.-D. Nuhn, G. Pile, D. Ratner, J. Rzepiela, D. Schultz, T. Smith, P. Stefan, H. Tompkins, J. Turner, J. Welch, W. White, J. Wu, G. Yocky, and J. Galayda, “ First lasing and operation of an angstrom-wavelength free-electron laser,” Nat. Photonics 4, 641647 (2010).
2. H. N. Chapman, P. Fromme, A. Barty, T. A. White, R. A. Kirian, A. Aquila, M. S. Hunter, J. Schulz, D. P. DePonte, U. Weierstall, R. B. Doak, F. R. N. C. Maia, A. V. Martin, I. Schlichting, L. Lomb, N. Coppola, R. L. Shoeman, S. W. Epp, R. Hartmann, D. Rolles, A. Rudenko, L. Foucar, N. Kimmel, G. Weidenspointner, P. Holl, M. Liang, M. Barthelmess, C. Caleman, S. Boutet, M. J. Bogan, J. Krzywinski, C. Bostedt, S. Bajt, L. Gumprecht, B. Rudek, B. Erk, C. Schmidt, A. Homke, C. Reich, D. Pietschner, L. Struder, G. Hauser, H. Gorke, J. Ullrich, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K.-U. Kuhnel, M. Messerschmidt, J. D. Bozek, S. P. Hau-Riege, M. Frank, C. Y. Hampton, R. G. Sierra, D. Starodub, G. J. Williams, J. Hajdu, N. Timneanu, M. M. Seibert, J. Andreasson, A. Rocker, O. Jonsson, M. Svenda, S. Stern, K. Nass, R. Andritschke, C.-D. Schroter, F. Krasniqi, M. Bott, K. E. Schmidt, X. Wang, I. Grotjohann, J. M. Holton, T. R. M. Barends, R. Neutze, S. Marchesini, R. Fromme, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, I. Andersson, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, and J. C. H. Spence, “ Femtosecond X-ray protein nanocrystallography,” Nature 470, 7377 (2011).
3. S. Boutet, L. Lomb, G. J. Williams, T. R. M. Barends, A. Aquila, R. B. Doak, U. Weierstall, D. P. DePonte, J. Steinbrener, R. L. Shoeman, M. Messerschmidt, A. Barty, T. A. White, S. Kassemeyer, R. A. Kirian, M. M. Seibert, P. A. Montanez, C. Kenney, R. Herbst, P. Hart, J. Pines, G. Haller, S. M. Gruner, H. T. Philipp, M. W. Tate, M. Hromalik, L. J. Koerner, N. van Bakel, J. Morse, W. Ghonsalves, D. Arnlund, M. J. Bogan, C. Caleman, R. Fromme, C. Y. Hampton, M. S. Hunter, L. C. Johansson, G. Katona, C. Kupitz, M. Liang, A. V. Martin, K. Nass, L. Redecke, F. Stellato, N. Timneanu, D. Wang, N. A. Zatsepin, D. Schafer, J. Defever, R. Neutze, P. Fromme, J. C. H. Spence, H. N. Chapman, and I. Schlichting, “ High-resolution protein structure determination by serial femtosecond crystallography,” Science 337, 362364 (2012).
4. G. Sciaini and R. J. D. Miller, “ Femtosecond electron diffraction: heralding the era of atomically resolved dynamics,” Rep. Prog. Phys. 74, 096101 (2011).
5. M. Chergui and A. H. Zewail, “ Electron and X-ray methods of ultrafast structural dynamics: Advances and applications,” ChemPhysChem 10, 2843 (2009).
6. M. Gao, C. Lu, H. Jean-Ruel, L. C. Liu, A. Marx, K. Onda, S.-y. Koshihara, Y. Nakano, X. Shao, T. Hiramatsu, G. Saito, H. Yamochi, R. R. Cooney, G. Moriena, G. Sciaini, and R. J. D. Miller, “ Mapping molecular motions leading to charge delocalization with ultrabright electrons,” Nature 496, 343346 (2013).
7. B. J. Claessens, S. B. van der Geer, G. Taban, E. J. D. Vredenbregt, and O. J. Luiten, “ Ultracold electron source,” Phys. Rev. Lett. 95, 164801 (2005).
8. G. Taban, M. P. Reijnders, B. Fleskens, S. B. van der Geer, O. J. Luiten, and E. J. D. Vredenbregt, “ Ultracold electron source for single-shot diffraction studies,” Europhys. Lett. 91, 46004 (2010).
9. A. J. McCulloch, D. V. Sheludko, S. D. Saliba, S. C. Bell, M. Junker, K. A. Nugent, and R. E. Scholten, “ Arbitrarily shaped high-coherence electron bunches from cold atoms,” Nat. Phys. 7, 785789 (2011).
10. W. J. Engelen, M. A. van der Heijden, D. J. Bakker, E. J. D. Vredenbregt, and O. J. Luiten, “ High-coherence electron bunches produced by femtosecond photoionization,” Nat. Commun. 4, 1693 (2013).
11. A. J. McCulloch, D. V. Sheludko, M. Junker, and R. E. Scholten, “ High-coherence picosecond electron bunches from cold atoms,” Nat. Commun. 4, 1692 (2013).
12. M. Aidelsburger, F. O. Kirchner, F. Krausz, and P. Baum, “ Single-electron pulses for ultrafast diffraction,” Proc. Natl. Acad. Sci. U.S.A. 107, 1971419719 (2010).
13. C. P. Hauri, R. Ganter, F. Le Pimpec, A. Trisorio, C. Ruchert, and H. H. Braun, “ Intrinsic emittance reduction of an electron beam from metal photocathodes,” Phys. Rev. Lett. 104, 234802 (2010).
14. F. O. Kirchner, S. Lahme, F. Krausz, and P. Baum, “ Coherence of femtosecond single electrons exceeds biomolecular dimensions,” New J. Phys. 15, 063021 (2013).
15. J. Hoffrogge, J. Paul Stein, M. Krüger, M. Förster, J. Hammer, D. Ehberger, P. Baum, and P. Hommelhoff, “ Tip-based source of femtosecond electron pulses at 30 keV,” J. Appl. Phys. 115, 094506 (2014).
16. G. Taban, M. P. Reijnders, S. C. Bell, S. B. van der Geer, O. J. Luiten, and E. J. D. Vredenbregt, “ Design and validation of an accelerator for an ultracold electron source,” Phys. Rev. Spec. Top. -Accel. Beams 11, 050102 (2008).
17. W. Engelen, E. Smakman, D. Bakker, O. Luiten, and E. Vredenbregt, “ Effective temperature of an ultracold electron source based on near-threshold photoionization,” Ultramicroscopy 136, 7380 (2014).
18. Sample produced by mechanical exfoliation of Naturally Graphite sample, see
19. S. B. Van der Geer and M. J. De Loos, “ General Particle Tracer” (2011), see
20. S. B. van der Geer, M. J. de Loos, E. J. D. Vredenbregt, and O. J. Luiten, “ Ultracold electron source for single-shot, ultrafast electron diffraction,” Microsc. Microanal. 15, 282289 (2009).
21. B. Carlsten, “ New photoelectric injector design for the Los Alamos National Laboratory XUV FEL accelerator,” Nucl. Instrum. Methods Phys. Res., Sect. A 285, 313319 (1989).
22. L. Serafini and J. B. Rosenzweig, “ Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors: A theory of emittance compensation,” Phys. Rev. E 55, 75657590 (1997).

Data & Media loading...


Article metrics loading...



The study of structural dynamics of complex macromolecular crystals using electrons requires bunches of sufficient coherence and charge. We present diffraction patterns from graphite, obtained with bunches from an ultracold electron source, based on femtosecond near-threshold photoionization of a laser-cooled atomic gas. By varying the photoionization wavelength, we change the effective source temperature from 300 K to 10 K, resulting in a concomitant change in the width of the diffraction peaks, which is consistent with independently measured source parameters. This constitutes a direct measurement of the beam coherence of this ultracold source and confirms its suitability for protein crystal diffraction.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd