Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. Mourou and S. Williamson, “Picosecond electron-diffraction,” Appl. Phys. Lett. 41(1), 4445 (1982).
2. D. J. Flannigan and A. H. Zewail, “4D electron microscopy: Principles and applications,” Acc. Chem. Res. 45(10), 18281839 (2012).
3. R. J. Dwayne Miller, “Mapping atomic motions with ultrabright electrons: The chemists' Gedanken experiment enters the lab frame,” Annu. Rev. Phys. Chem. 65(1), 583604 (2014).
4. M. Gao, C. Lu, H. Jean-Ruel, L. C. Liu, A. Marx, K. Onda, S. Koshihara, Y. Nakano, X. F. Shao, T. Hiramatsu, G. Saito, H. Yamochi, R. R. Cooney, G. Moriena, G. Sciaini, and R. J. D. Miller, “Mapping molecular motions leading to charge delocalization with ultrabright electrons,” Nature 496(7445), 343346 (2013).
5. B. Barwick, H. S. Park, O. H. Kwon, J. S. Baskin, and A. H. Zewail, “4D imaging of transient structures and morphologies in ultrafast electron microscopy,” Science 322(5905), 12271231 (2008).
6. H. Jean-Ruel, M. Gao, M. A. Kochman, C. Lu, L. C. Liu, R. R. Cooney, C. A. Morrison, and R. J. D. Miller, “Ring-closing reaction in diarylethene captured by femtosecond electron crystallography,” J. Phys. Chem. B 117(49), 1589415902 (2013).
7. T. R. T. Han, Z. S. Tao, S. D. Mahanti, K. Chang, C. Y. Ruan, C. D. Malliakas, and M. G. Kanatzidis, “Structural dynamics of two-dimensional charge-density waves in CeTe3 investigated by ultrafast electron crystallography,” Phys. Rev. B 86(7), 075145 (2012).
8. N. Erasmus, M. Eichberger, K. Haupt, I. Boshoff, G. Kassier, R. Birmurske, H. Berger, J. Demsar, and H. Schwoerer, “Ultrafast dynamics of charge density waves in 4H(b)-TaSe2 probed by femtosecond electron diffraction,” Phys. Rev. Lett. 109(16), 167402 (2012).
9. S. Wall, B. Krenzer, S. Wippermann, S. Sanna, F. Klasing, A. Hanisch-Blicharski, M. Kammler, W. G. Schmidt, and M. Horn-von Hoegen, “Atomistic picture of charge density wave formation at surfaces,” Phys. Rev. Lett. 109(18), 186101 (2012).
10. M. Ligges, I. Rajkovic, P. Zhou, O. Posth, C. Hassel, G. Dumpich, and D. D. Linde, “Observation of ultrafast lattice heating using time resolved electron diffraction,” Appl. Phys. Lett. 94(10), 101910 (2009).
11. F. Carbone, P. Baum, P. Rudolf, and A. Zewail, “Structural preablation dynamics of graphite observed by ultrafast electron crystallography,” Phys. Rev. Lett. 100(3), 035501 (2008).
12. S. Schäfer, W. Liang, and A. H. Zewail, “Primary structural dynamics in graphite,” New J. Phys. 13(6), 063030 (2011).
13. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302(5649), 13821385 (2003).
14. C. Y. Ruan, Y. Murooka, R. K. Raman, R. A. Murdick, R. J. Worhatch, and A. Pell, “The development and applications of ultrafast electron nanocrystallography,” Microsc. Microanal. 15(4), 323337 (2009).
15. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “Ultrafast electron optics: Propagation dynamics of femtosecond electron packets,” J. Appl. Phys. 92(3), 16431648 (2002).
16. G. H. Kassier, N. Erasmus, K. Haupt, I. Boshoff, R. Siegmund, S. M. M. Coelho, and H. Schwoerer, “Photo-triggered pulsed cavity compressor for bright electron bunches in ultrafast electron diffraction,” Appl. Phys. B: Lasers Opt. 109(2), 249257 (2012).
17. T. van Oudheusden, P. L. E. M. Pasmans, S. B. van der Geer, M. J. de Loos, M. J. van der Wiel, and O. J. Luiten, “Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction,” Phys. Rev. Lett. 105(26), 264801 (2010).
18. M. Gao, Y. Jiang, G. H. Kassier, and R. J. D. Miller, “Single shot time stamping of ultrabright radio frequency compressed electron pulses,” Appl. Phys. Lett. 103(3), 033503 (2013).
19. G. F. Mancini, B. Mansart, S. Pagano, B. van der Geer, M. de Loos, and F. Carbone, “Design and implementation of a flexible beamline for fs electron diffraction experiments,” Nucl. Instrum. Methods Phys. Res., Sect. A 691, 113122 (2012).
20. M. Gao, H. Jean-Ruel, R. R. Cooney, J. Stampe, M. de Jong, M. Harb, G. Sciaini, G. Moriena, and R. J. D. Miller, “Full characterization of RF compressed femtosecond electron pulses using ponderomotive scattering,” Opt. Express 20(11), 1204812058 (2012).
21. R. P. Chatelain, V. R. Morrison, C. Godbout, and B. J. Siwick, “Ultrafast electron diffraction with radio-frequency compressed electron pulses,” Appl. Phys. Lett. 101(8), 081901 (2012).
22. G. J. H. Brussaard, A. Lassise, P. L. E. M. Pasmans, P. H. A. Mutsaers, M. J. van der Wiel, and O. J. Luiten, “Direct measurement of synchronization between femtosecond laser pulses and a 3 GHz radio frequency electric field inside a resonant cavity,” Appl. Phys. Lett. 103(14), 141105 (2013).
23. A. Gliserin, A. Apolonski, F. Krausz, and P. Baum, “Compression of single-electron pulses with a microwave cavity,” New J. Phys. 14, 073055 (2012).
24. K. Jung and J. Kim, “Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers,” Opt. Lett. 37(14), 29582960 (2012).
25. T. van Oudheusden, E. F. de Jong, S. B. van der Geer, W. P. E. M. O. Root, O. J. Luiten, and B. J. Siwick, “Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range,” J. Appl. Phys. 102(9), 093501 (2007).
26. O. J. Luiten, S. B. van der Geer, M. J. de Loos, F. B. Kiewiet, and M. J. van der Wiel, “How to realize uniform three-dimensional ellipsoidal electron bunches,” Phys. Rev. Lett. 93(9), 094802 (2004).
27. E. Vredenbregt and J. Luiten, “Electron diffraction: Cool beams in great shape,” Nat. Phys. 7(10), 747748 (2011).
28. P. Musumeci, J. T. Moody, R. J. England, J. B. Rosenzweig, and T. Tran, “Experimental generation and characterization of uniformly filled ellipsoidal electron-beam distributions,” Phys. Rev. Lett. 100(24), 244801 (2008).
29. V. A. Lobastov, R. Srinivasan, and A. H. Zewail, “Four-dimensional ultrafast electron microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102(20), 70697073 (2005).
30. P. Hansen, C. Baumgarten, H. Batelaan, and M. Centurion, “Dispersion compensation for attosecond electron pulses,” Appl. Phys. Lett. 101(8), 083501 (2012).
31. L. Veisz, G. Kurkin, K. Chernov, V. Tarnetsky, A. Apolonski, F. Krausz, and E. Fill, “Hybrid dc-ac electron gun for fs-electron pulse generation,” New J. Phys. 9, 451 (2007).
32. I. Katayama, K. Sato, S. Koga, J. Takeda, S. Hishita, H. Fukidome, M. Suemitsu, and M. Kitajima, “Coherent nanoscale optical-phonon wave packet in graphene layers,” Phys. Rev. B 88(24), 245406 (2013).
33. Y. W. Li, V. A. Stoica, L. Endicott, G. Y. Wang, C. Uher, and R. Clarke, “Coherent optical phonon spectroscopy studies of femtosecond-laser modified Sb2Te3 films,” Appl. Phys. Lett. 97(17), 171908 (2010).
34. M. Hase, M. Katsuragawa, A. M. Constantinescu, and H. Petek, “Coherent phonon-induced optical modulation in semiconductors at terahertz frequencies,” New J. Phys. 15, 055018 (2013).
35. M. Barbatti, A. J. A. Aquino, H. Lischka, C. Schriever, S. Lochbrunner, and E. Riedle, “Ultrafast internal conversion pathway and mechanism in 2-(2′-hydroxyphenyl) benzothiazole: A case study for excited-state intramolecular proton transfer systems,” Phys. Chem. Chem. Phys. 11(9), 14061415 (2009).
36. F. Schmitt, P. S. Kirchmann, U. Bovensiepen, R. G. Moore, J. H. Chu, D. H. Lu, L. Rettig, M. Wolf, I. R. Fisher, and Z. X. Shen, “Ultrafast electron dynamics in the charge density wave material TbTe3,” New J. Phys. 13, 063022 (2011).
37. K. Kimura, H. Matsuzaki, S. Takaishi, M. Yamashita, and H. Okamoto, “Ultrafast photoinduced transitions in charge density wave, Mott insulator, and metallic phases of an iodine-bridged platinum compound,” Phys. Rev. B 79(7), 075116 (2009).
38. A. T. Yeh, C. V. Shank, and J. K. McCusker, “Ultrafast electron localization dynamics following photo-induced charge transfer,” Science 289(5481), 935938 (2000).
39. P. Baum and A. H. Zewail, “4D attosecond imaging with free electrons: Diffraction methods and potential applications,” Chem. Phys. 366(1–3), 28 (2009).
40. B. Barwick, D. J. Flannigan, and A. H. Zewail, “Photon-induced near-field electron microscopy,” Nature 462(7275), 902906 (2009).
41. C. Y. Ruan, F. Vigliotti, V. A. Lobastov, S. Y. Chen, and A. H. Zewail, “Ultrafast electron crystallography: Transient structures of molecules, surfaces, and phase transitions,” Proc. Natl. Acad. Sci. U. S. A. 101(5), 11231128 (2004).
42. A. H. Zewail, “4D ultrafast electron diffraction, crystallography, and microscopy,” Annu. Rev. Phys. Chem. 57, 65103 (2006).
43. E. Fill, L. Veisz, A. Apolonski, and F. Krausz, “Sub-fs electron pulses for ultrafast electron diffraction,” New J. Phys. 8, 272 (2006).
44. F. O. Kirchner, S. Lahme, F. Krausz, and P. Baum, “Coherence of femtosecond single electrons exceeds biomolecular dimensions,” New J. Phys. 15, 063021 (2013).
45. F. O. Kirchner, A. Gliserin, F. Krausz, and P. Baum, “Laser streaking of free electrons at 25 keV,” Nat. Photonics 8(1), 5257 (2014).
46. N. Bonini, M. Lazzeri, N. Marzari, and F. Mauri, “Phonon anharmonicities in graphite and graphene,” Phys. Rev. Lett. 99(17), 176802 (2007).
47. M. Scheuch, T. Kampfrath, M. Wolf, K. von Volkmann, C. Frischkorn, and L. Perfetti, “Temperature dependence of ultrafast phonon dynamics in graphite,” Appl. Phys. Lett. 99(21), 211908 (2011).
48. H. S. Park, J. S. Baskin, B. Barwick, O. H. Kwon, and A. H. Zewail, “4D ultrafast electron microscopy: Imaging of atomic motions, acoustic resonances, and moire fringe dynamics,” Ultramicroscopy 110(1), 719 (2009).
49. W. X. Liang, G. M. Vanacore, and A. H. Zewail, “Observing (non)linear lattice dynamics in graphite by ultrafast Kikuchi diffraction,” Proc. Natl. Acad. Sci. U. S. A. 111(15), 54915496 (2014).
50. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1991).
51. D. D. L. Chung, “Review graphite,” J. Mater. Sci. 37(8), 14751489 (2002).
52. P. B. Hirsch and A. Howie, Electron Microscopy of Thin Crystals (Butterworths, 1965).
53. L. Tang and D. E. Laughlin, “Electron diffraction patterns of fibrous and lamellar textured polycrystalline thin films. 1. Theory,” J. Appl. Crystallogr. 29, 411418 (1996).
54. J. M. Cowley and S. Kuwabara, “Electron diffraction intensities from polycrystalline material containing heavy atoms,” Acta Crystallogr. 15(3), 260270 (1962).
55. H. Liu, O.-H. Kwon, J. Tang, and A. H. Zewail, “4D imaging and diffraction dynamics of single-particle phase transition in heterogeneous ensembles,” Nano Lett. 14(2), 946954 (2014).
56. D. K. L. Tsang, B. J. Marsden, S. L. Fok, and G. Hall, “Graphite thermal expansion relationship for different temperature ranges,” Carbon 43(14), 29022906 (2005).
57. H. Park, X. Wang, S. Nie, R. Clinite, and J. Cao, “Mechanism of coherent acoustic phonon generation under nonequilibrium conditions,” Phys. Rev. B 72(10), 100301R (2005).
58. M. Harb, A. Jurgilaitis, H. Enquist, R. Nüske, C. V. Korff Schmising, J. Gaudin, S. L. Johnson, C. J. Milne, P. Beaud, E. Vorobeva, A. Caviezel, S. O. Mariager, G. Ingold, and J. Larsson, “Picosecond dynamics of laser-induced strain in graphite,” Phys. Rev. B 84(4), 045435 (2011).
59. M. Harb, W. Peng, G. Sciaini, C. T. Hebeisen, R. Ernstorfer, M. A. Eriksson, M. G. Lagally, S. G. Kruglik, and R. J. D. Miller, “Excitation of longitudinal and transverse coherent acoustic phonons in nanometer free-standing films of (001) Si,” Phys. Rev. B 79(9), 094301 (2009).
60. N. Del Fatti, C. Voisin, D. Christofilos, F. Vallee, and C. Flytzanis, “Acoustic vibration of metal films and nanoparticles,” J. Phys. Chem. A 104(18), 43214326 (2000).
61. H. Park, S. Nie, X. Wang, R. Clinite, and J. Cao, “Optical control of coherent lattice motions probed by femtosecond electron diffraction,” J. Phys. Chem. B 109(29), 1385413856 (2005).
62. S. Schäfer, W. X. Liang, and A. H. Zewail, “Structural dynamics of surfaces by ultrafast electron crystallography: Experimental and multiple scattering theory,” J. Chem. Phys. 135(21), 214201 (2011).
63. A. Bosak, M. Krisch, M. Mohr, J. Maultzsch, and C. Thomsen, “Elasticity of single-crystalline graphite: Inelastic x-ray scattering study,” Phys. Rev. B 75(15), 153408 (2007).
64. P. Baum, D. S. Yang, and A. H. Zewail, “4D visualization of transitional structures in phase transformations by electron diffraction,” Science 318(5851), 788792 (2007).
65. J. Hoffrogge, J. P. Stein, M. Kruger, M. Forster, J. Hammer, D. Ehberger, P. Baum, and P. Hommelhoff, “Tip-based source of femtosecond electron pulses at 30 keV,” J. Appl. Phys. 115(9), 094506 (2014).
66. C. Kealhofer, S. M. Foreman, S. Gerlich, and M. A. Kasevich, “Ultrafast laser-triggered emission from hafnium carbide tips,” Phys. Rev. B 86(3), 035405 (2012).

Data & Media loading...


Article metrics loading...



Ultrafast electron diffraction allows the tracking of atomic motion in real time, but space charge effects within dense electron packets are a problem for temporal resolution. Here, we report on time-resolved pump-probe diffraction using femtosecond single-electron pulses that are free from intra-pulse Coulomb interactions over the entire trajectory from the source to the detector. Sufficient average electron current is achieved at repetition rates of hundreds of kHz. Thermal load on the sample is avoided by minimizing the pump-probe area and by maximizing heat diffusion. Time-resolved diffraction from fibrous graphitepolycrystals reveals coherent acoustic phonons in a nanometer-thick grain ensemble with a signal-to-noise level comparable to conventional multi-electron experiments. These results demonstrate the feasibility of pump-probe diffraction in the single-electron regime, where simulations indicate compressibility of the pulses down to few-femtosecond and attosecond duration.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd