Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. Simons and D. Toomre, “ Lipid rafts and signal transduction,” Nat. Rev. Mol. Cell Biol. 1(1), 3139 (2000).
2. S. L. Veatch, P. Cicuta, P. Sengupta, A. Honerkamp-Smith, D. Holowka, and B. Baird, “ Critical fluctuations in plasma membrane vesicles,” ACS Chem. Biol. 3(5), 287293 (2008).
3. I. Langmuir, “ The constitution and fundamental properties of solids and liquids. II. Liquids.1,” J. Am. Chem. Soc. 39(9), 18481906 (1917).
4. D. Hoenig and D. Moebius, “ Direct visualization of monolayers at the air-water interface by Brewster angle microscopy,” J. Phys. Chem. 95(12), 45904592 (1991).
5. H. M. McConnell, “ Structures and transitions in lipid monolayers at the air-water-interface,” Annu. Rev. Phys. Chem. 42, 171195 (1991).
6. B. L. Stottrup, D. S. Stevens, and S. L. Keller, “ Miscibility of ternary mixtures of phospholipids and cholesterol in monolayers, and application to bilayer systems,” Biophys. J. 88(1), 269276 (2005).
7. K. Kjaer, J. Alsnielsen, C. A. Helm, L. A. Laxhuber, and H. Mohwald, “ Ordering in lipid monolayers studied by synchrotron x-ray-diffraction and fluorescence microscopy,” Phys. Rev. Lett. 58(21), 22242227 (1987).
8. H. Mohwald, “ Phospholipid and phospholipid-protein monolayers at the air/water interface,” Annu. Rev. Phys. Chem. 41, 441476 (1990).
9. G. Ma and H. C. Allen, “ DPPC Langmuir monolayer at the air-water interface: Probing the tail and head groups by vibrational sum frequency generation spectroscopy,” Langmuir 22(12), 53415349 (2006).
10. S. L. Veatch and S. L. Keller, “ Organization in lipid membranes containing cholesterol,” Phys. Rev. Lett. 89(26), 268101268105 (2002).
11. V. M. Kaganer, H. Möhwald, and P. Dutta, “ Structure and phase transitions in Langmuir monolayers,” Rev. Mod. Phys. 71(3), 779819 (1999).
12. G. B. Ansell, J. N. Hawthorne, and R. M. C. Dawson, Form and function of Phospholipids (Elsevier Scientific Pub. Co., Amsterdam, 1973).
13. N. R. Pallas and B. A. Pethica, “ Liquid-expanded to liquid-condensed transition in lipid monolayers at the air/water interface,” Langmuir 1(4), 509513 (1985).
14. J. B. Li, R. Miller, D. Vollhardt, G. Weidemann, and H. Möhwald, “ Isotherms of phospholipid monolayers measured by a pendant drop technique,” Colloid Polym. Sci. 274(10), 995999 (1996).
15. A. Gopal and K. Y. C. Lee, “ Headgroup percolation and collapse of condensed Langmuir monolayers,” J. Phys. Chem. B 110(44), 2207922087 (2006).
16. K. Nag and K. M. Keough, “ Epifluorescence microscopic studies of monolayers containing mixtures of dioleoyl- and dipalmitoyl-phosphatidylcholines,” Biophys. J. 65(3), 10191026 (1993).
17. C. W. McConlogue and T. K. Vanderlick, “ A close look at domain formation in dppc monolayers,” Langmuir 13(26), 71587164 (1997).
18.See supplementary material at for additional fluorescent microscopy, steady-state, and time-resolved data. The supplement also inclues detailed MEM analysis.[Supplementary Material]
19. H. Saito, T. Araiso, H. Shirahama, and T. Koyama, “ Dynamics of the bilayer-water interface of phospholipid vesicles and the effect of cholesterol: A picosecond fluorescence anisotropy study,” J. Biochem. 109(4), 559565 (1991); available at
20. A. J. Greiner, H. A. Pillman, R. M. Worden, G. J. Blanchard, and R. Y. Ofoli, “ Effect of hydrogen bonding on the rotational and translational dynamics of a headgroup-bound chromophore in bilayer lipid membranes,” J. Phys. Chem. B 113(40), 1326313268 (2009).
21. J. P. Slotte and P. Mattjus, “ Visualization of lateral phases in cholesterol and phosphatidylcholine monolayers at the air/water interface—a comparative study with two different reporter molecules,” Biochim. Biophys. Acta 1254(1), 2229 (1995).
22. A. Sonnleitner, G. J. Schutz, and T. Schmidt, “ Free Brownian motion of individual lipid molecules in biomembranes,” Biophys. J. 77(5), 26382642 (1999).
23. M. L. Wagner and L. K. Tamm, “ Reconstituted syntaxin1A/SNAP25 interacts with negatively charged lipids as measured by lateral diffusion in planar supported bilayers,” Biophys. J. 81(1), 266275 (2001).
24. C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, “ Lipid rafts reconstituted in model membranes,” Biophys. J. 80(3), 14171428 (2001).
25. A. Filippov, G. Oradd, and G. Lindblom, “ Lipid lateral diffusion in ordered and disordered phases in raft mixtures,” Biophys. J. 86(2), 891896 (2004).
26. Z. Derzko and K. Jacobson, “ Comparative lateral diffusion of fluorescent lipid analogs in phospholipid multibilayers,” Biochemistry 19(26), 60506057 (1980).
27. B. J. Balcom and N. O. Petersen, “ Lateral diffusion in model membranes is independent of the size of the hydrophobic region of molecules,” Biophys. J. 65(2), 630637 (1993).
28. L. Loura and J. Ramalho, “ Location and dynamics of acyl chain NBD-labeled phosphatidylcholine (NBD-PC) in DPPC bilayers. A molecular dynamics and time-resolved fluorescence anisotropy study,” Biochim. Biophys. Acta, Biomembr. 1768(3), 467478 (2007).
29. A. Chattopadhyay and E. London, “ Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids,” Biochemistry 26(1), 3945 (1987).
30. S. Mazères, V. Schram, J. F. Tocanne, and A. Lopez, “ 7-nitrobenz-2-oxa-1,3-diazole-4-yl-labeled phospholipids in lipid membranes: Differences in fluorescence behavior,” Biophys. J. 71(1), 327335 (1996).
31. M. T. Cicerone, F. R. Blackburn, and M. D. Ediger, “ How do molecules move near Tg? - molecular rotation of 6 probes in o-terphenyl across 14 decades in time,” J. Chem. Phys. 102(1), 471479 (1995).
32. H. Raghuraman, S. Shrivastava, and A. Chattopadhyay, “ Monitoring the looping up of acyl chain labeled NBD lipids in membranes as a function of membrane phase state,” Biochim. Biophys. Acta, Biomembr. 1768(5), 12581267 (2007).
33. H.-J. Butt, K. Graf, and M. Kappl, in Physics and Chemistry of Interfaces ( Wiley-VCH Verlag GmbH & Co. KGaA, 2004), pp. 425.
34. J. Lakowicz, Principles of Fluorescence Spectroscopy ( Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, 1999).
35. T. Christopher, S. B. Paul, V. K. Srinagesh, and S. V. Steven, in FLIM Microscopy in Biology and Medicine ( Chapman and Hall/CRC, 2009), pp. 245320.
36. P. J. Steinbach, R. Ionescu, and C. R. Matthews, “ Analysis of kinetics using a hybrid maximum-entropy/nonlinear-least-squares method: Application to protein folding,” Biophys. J. 82(4), 22442255 (2002).
37. M. Kocun, T. D. Lazzara, C. Steinem, and A. Janshoff, “ Preparation of solvent-free, pore-spanning lipid bilayers: Modeling the low tension of plasma membranes,” Langmuir 27(12), 76727680 (2011).
38. K. Kinosita, Jr., S. Kawato, and A. Ikegami, “ A theory of fluorescence polarization decay in membranes,” Biophys. J. 20(3), 289305 (1977).
39. C. Donati, S. C. Glotzer, P. H. Poole, W. Kob, and S. J. Plimpton, “ Spatial correlations of mobility and immobility in a glass-forming Lennard-Jones liquid,” Phys. Rev. E 60(3), 31073119 (1999).
40. M. D. Ediger, “ Spatially heterogeneous dynamics in supercooled liquids,” Annu. Rev. Phys. Chem. 51, 99128 (2000).
41. R. Richert, “ Heterogeneous dynamics in liquids: Fluctuations in space and time,” J. Phys.: Condens. Matter 14(23), R703R738 (2002).
42. A. Honigmann, C. Walter, F. Erdmann, C. Eggeling, and R. Wagner, “ Characterization of horizontal lipid bilayers as a model system to study lipid phase separation,” Biophys. J. 98(12), 28862894 (2010).
43. E. Falck, T. Rog, M. Karttunen, and I. Vattulainen, “ Lateral diffusion in lipid membranes through collective flows,” J. Am. Chem. Soc. 130(1), 4445 (2008).
44. L. F. Zhang and S. Granick, “ Slaved diffusion in phospholipid bilayers,” Proc. Natl. Acad. Sci. U.S.A. 102(26), 91189121 (2005).
45. F. W. Starr, B. Hartmann, and J. F. Douglas, “ Dynamical clustering and a mechanism for raft-like structures in a model lipid membrane,” Soft Matter 10(17), 30363047 (2014).

Data & Media loading...


Article metrics loading...



The rotational correlation time of the lipid probe 1-palmitoyl-2-{6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl}--glycero-3-phosphocholine (NBD-PC) is measured using fluorescence anisotropy for two lipid species. We measure the rotational diffusion in a monolayer of 1,2-Didecanoyl-sn-glycero-3-phosphocholine (DPPC) which displays a phase transition at room temperature from the liquid-expanded to the liquid-condensed phase. The constant rotational diffusion of the probe throughout the phase transition reflects the measurement of dynamics in only the liquid-expanded phase. We contrast the dynamic changes during this phase coexistence to the continuous density increase observed in 1,2-dimyristoyl--glycero-3-phosphocholine (DMPC) at room temperature. We observe a non-exponential decay of the probe diffusion consistent with heterogeneity of the orientational dynamics.


Full text loading...


Most read this month


Most cited this month

+ More - Less

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd